Stepto Nigel K, Coffey Vernon G, Carey Andrew L, Ponnampalam Anna P, Canny Benedict J, Powell David, Hawley John A
Department of Physiology, Monash University, Clayton, Victoria, Australia.
Med Sci Sports Exerc. 2009 Mar;41(3):546-65. doi: 10.1249/MSS.0b013e31818c6be9.
We used gene microarray analysis to compare the global expression profile of genes involved in adaptation to training in skeletal muscle from chronically strength-trained (ST), endurance-trained (ET), and untrained control subjects (Con).
Resting skeletal muscle samples were obtained from the vastus lateralis of 20 subjects (Con n = 7, ET n = 7, ST n = 6; trained [TR] groups >8 yr specific training). Total RNA was extracted from tissue for two color microarray analysis and quantative (Q)-PCR. Trained subjects were characterized by performance measures of peak oxygen uptake (V x O 2peak) on a cycle ergometer and maximal concentric and eccentric leg strength on an isokinetic dynamometer.
Two hundred and sixty-three genes were differentially expressed in trained subjects (ET + ST) compared with Con (P < 0.05), whereas 21 genes were different between ST and ET (P < 0.05). These results were validated by reverse transcriptase polymerase chain reaction for six differentially regulated genes (EIFSJ, LDHB, LMO4, MDH1, SLC16A7, and UTRN. Manual cluster analyses revealed significant regulation of genes involved in muscle structure and development in TR subjects compared with Con (P <or= 0.05) and expression correlated with measures of performance (P < 0.05). ET had increased whereas ST had decreased expression of gene clusters related to mitochondrial/oxidative capacity (P <or= 0.05). These mitochondrial gene clusters correlated with V x O 2peak (P < 0.05). V x O 2peak also correlated with expression of gene clusters that regulate fat and carbohydrate oxidation (P < 0.05).
We demonstrate that chronic training subtly coregulates numerous genes from important functional groups that may be part of the long-term adaptive process to adapt to repeated training stimuli.
我们运用基因微阵列分析,比较长期进行力量训练(ST)、耐力训练(ET)的受试者以及未经训练的对照受试者(Con)骨骼肌中参与训练适应的基因的整体表达谱。
从20名受试者的股外侧肌获取静息骨骼肌样本(Con组n = 7,ET组n = 7,ST组n = 6;训练[TR]组进行特定训练超过8年)。从组织中提取总RNA用于双色微阵列分析和定量(Q)-PCR。通过在功率自行车上测量峰值摄氧量(V̇O₂peak)以及在等速测力计上测量最大向心和离心腿部力量来表征训练受试者的特征。
与Con组相比,训练受试者(ET + ST)中有263个基因差异表达(P < 0.05),而ST组和ET组之间有21个基因不同(P < 0.05)。通过逆转录聚合酶链反应对6个差异调节基因(EIFSJ、LDHB、LMO4、MDH1、SLC16A7和UTRN)验证了这些结果。手动聚类分析显示,与Con组相比,TR受试者中参与肌肉结构和发育的基因有显著调节(P ≤ 0.05),且表达与性能指标相关(P < 0.05)。ET组中与线粒体/氧化能力相关的基因簇表达增加,而ST组则减少(P ≤ 0.05)。这些线粒体基因簇与V̇O₂peak相关(P < 0.05)。V̇O₂peak也与调节脂肪和碳水化合物氧化的基因簇表达相关(P < 0.05)。
我们证明,长期训练会精细地共同调节来自重要功能组的众多基因,这些基因可能是长期适应过程的一部分,以适应重复的训练刺激。