Suppr超能文献

肌浆膜蛋白和泛素羧基末端水解酶1的信使核糖核酸在α-生育酚缺乏小鼠的骨骼肌中过度表达。

Sarcolipin and ubiquitin carboxy-terminal hydrolase 1 mRNAs are over-expressed in skeletal muscles of alpha-tocopherol deficient mice.

作者信息

Vasu Vihas T, Ott Sean, Hobson Brad, Rashidi Vania, Oommen Saji, Cross Carroll E, Gohil Kishorchandra

机构信息

Department of Internal Medicine, University of California, Davis, 95616, USA.

出版信息

Free Radic Res. 2009 Feb;43(2):106-16. doi: 10.1080/10715760802616676.

Abstract

The transcriptome of ataxic muscles from alpha-tocopherol transfer protein deficient (ATTP-KO), 23-month old, mice was compared with that of their normal littermates. Genes encoding sarcolipin (sln) and ubiquitin carboxyl-terminal hydrolase (uchl1) were over-expressed (> or =10-fold) in ataxic muscles. SLN is a 3.2 kDa membrane protein that binds to sarcoplasmic reticulum calcium ATPase, regulates Ca(+ +) transport and muscle relaxation-contraction cycles. UCHL1 is a 24.8 kDa member of proteosome proteins; it is over-expressed in myofibrillar myopathy and is associated with neurodegenerative diseases. Furthermore, six additional transcripts, three encoding thin-filament proteins and three encoding Ca(+ +) sensing proteins that participate in contraction-relaxation cycle, and eight transcripts that encode members of lysosomal proteins were also over-expressed in ataxic muscles. These observations suggest that chronic alpha-tocopherol (AT) deficiency activates critical genes of muscle contractility and protein degradation pathways, simultaneously. The magnitude of induction of sln and uchl1 was lower in asymptomatic, 8-month old, ATTP-KO mice and in 8-month old mice fed an AT-depleted diet. These studies suggest sln and uchl1 genes as novel targets of AT deficiency and may offer molecular correlates of well documented descriptions of neuromuscular dysfunctions in AT-deficient rodents. Since the neuromuscular deficits of ATTP-KO mice appear to be similar to those of patients with ATTP mutations, it is suggested that over-expression of sln and uchl1 may also contribute to AT-sensitive ataxia in humans.

摘要

将23月龄的α-生育酚转移蛋白缺陷(ATTP-KO)小鼠共济失调肌肉的转录组与其正常同窝小鼠的转录组进行了比较。编码肌浆素(sln)和泛素羧基末端水解酶(uchl1)的基因在共济失调肌肉中过度表达(≥10倍)。SLN是一种3.2 kDa的膜蛋白,它与肌浆网钙ATP酶结合,调节Ca(++)转运和肌肉舒张-收缩周期。UCHL1是蛋白酶体蛋白成员,分子量为24.8 kDa;它在肌原纤维肌病中过度表达,并与神经退行性疾病有关。此外,另外六个转录本,三个编码细肌丝蛋白,三个编码参与收缩-舒张周期的Ca(++)传感蛋白,以及八个编码溶酶体蛋白成员的转录本,在共济失调肌肉中也过度表达。这些观察结果表明,慢性α-生育酚(AT)缺乏同时激活了肌肉收缩性和蛋白质降解途径的关键基因。在无症状的8月龄ATTP-KO小鼠和喂食AT缺乏饮食的8月龄小鼠中,sln和uchl1的诱导程度较低。这些研究表明,sln和uchl1基因是AT缺乏的新靶点,可能为AT缺乏啮齿动物神经肌肉功能障碍的详细描述提供分子关联。由于ATTP-KO小鼠的神经肌肉缺陷似乎与ATTP突变患者的缺陷相似,因此有人提出,sln和uchl1的过度表达也可能导致人类对AT敏感的共济失调。

相似文献

10
Sarcolipin: A Key Thermogenic and Metabolic Regulator in Skeletal Muscle.肌脂蛋白:骨骼肌中关键的产热和代谢调节因子。
Trends Endocrinol Metab. 2016 Dec;27(12):881-892. doi: 10.1016/j.tem.2016.08.006. Epub 2016 Sep 13.

引用本文的文献

2
UCHL1 regulates oxidative activity in skeletal muscle.UCHL1 调节骨骼肌中的氧化活性。
PLoS One. 2020 Nov 2;15(11):e0241716. doi: 10.1371/journal.pone.0241716. eCollection 2020.
3
5
Ubiquitin C-Terminal Hydrolase L1 regulates myoblast proliferation and differentiation.泛素羧基末端水解酶L1调节成肌细胞的增殖和分化。
Biochem Biophys Res Commun. 2017 Oct 7;492(1):96-102. doi: 10.1016/j.bbrc.2017.08.027. Epub 2017 Aug 10.
7
Sarcolipin: A Key Thermogenic and Metabolic Regulator in Skeletal Muscle.肌脂蛋白:骨骼肌中关键的产热和代谢调节因子。
Trends Endocrinol Metab. 2016 Dec;27(12):881-892. doi: 10.1016/j.tem.2016.08.006. Epub 2016 Sep 13.

本文引用的文献

2
Widespread changes in protein synthesis induced by microRNAs.微小RNA诱导的蛋白质合成的广泛变化。
Nature. 2008 Sep 4;455(7209):58-63. doi: 10.1038/nature07228. Epub 2008 Jul 30.
3
The impact of microRNAs on protein output.微小RNA对蛋白质产出的影响。
Nature. 2008 Sep 4;455(7209):64-71. doi: 10.1038/nature07242. Epub 2008 Jul 30.
6
Mechanisms of ligand transfer by the hepatic tocopherol transfer protein.肝脏生育酚转运蛋白介导配体转运的机制。
J Biol Chem. 2008 Jun 27;283(26):17797-804. doi: 10.1074/jbc.M800121200. Epub 2008 May 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验