Suppr超能文献

罗宾逊-福尔兹超树

Robinson-Foulds supertrees.

作者信息

Bansal Mukul S, Burleigh J Gordon, Eulenstein Oliver, Fernández-Baca David

机构信息

Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel.

出版信息

Algorithms Mol Biol. 2010 Feb 24;5:18. doi: 10.1186/1748-7188-5-18.

Abstract

BACKGROUND

Supertree methods synthesize collections of small phylogenetic trees with incomplete taxon overlap into comprehensive trees, or supertrees, that include all taxa found in the input trees. Supertree methods based on the well established Robinson-Foulds (RF) distance have the potential to build supertrees that retain much information from the input trees. Specifically, the RF supertree problem seeks a binary supertree that minimizes the sum of the RF distances from the supertree to the input trees. Thus, an RF supertree is a supertree that is consistent with the largest number of clusters (or clades) from the input trees.

RESULTS

We introduce efficient, local search based, hill-climbing heuristics for the intrinsically hard RF supertree problem on rooted trees. These heuristics use novel non-trivial algorithms for the SPR and TBR local search problems which improve on the time complexity of the best known (naïve) solutions by a factor of Theta(n) and Theta(n2) respectively (where n is the number of taxa, or leaves, in the supertree). We use an implementation of our new algorithms to examine the performance of the RF supertree method and compare it to matrix representation with parsimony (MRP) and the triplet supertree method using four supertree data sets. Not only did our RF heuristic provide fast estimates of RF supertrees in all data sets, but the RF supertrees also retained more of the information from the input trees (based on the RF distance) than the other supertree methods.

CONCLUSIONS

Our heuristics for the RF supertree problem, based on our new local search algorithms, make it possible for the first time to estimate large supertrees by directly optimizing the RF distance from rooted input trees to the supertrees. This provides a new and fast method to build accurate supertrees. RF supertrees may also be useful for estimating majority-rule(-) supertrees, which are a generalization of majority-rule consensus trees.

摘要

背景

超树方法将具有不完全分类群重叠的小型系统发育树集合综合成包含输入树中所有分类群的综合树,即超树。基于成熟的罗宾逊 - 福尔兹(RF)距离的超树方法有潜力构建能保留输入树中大量信息的超树。具体而言,RF超树问题旨在寻找一个二叉超树,使该超树与输入树的RF距离之和最小。因此,RF超树是与输入树中最大数量的聚类(或分支)一致的超树。

结果

我们针对有根树上本质上困难的RF超树问题引入了高效的、基于局部搜索的爬山启发式算法。这些启发式算法针对SPR和TBR局部搜索问题使用了新颖的非平凡算法,其时间复杂度分别比最著名的(朴素)解决方案提高了Theta(n)和Theta(n2)倍(其中n是超树中的分类群数量,即叶子数量)。我们使用新算法的实现来检验RF超树方法的性能,并使用四个超树数据集将其与简约矩阵表示法(MRP)和三元组超树方法进行比较。我们的RF启发式算法不仅在所有数据集中都能快速估计RF超树,而且与其他超树方法相比,RF超树从输入树中保留了更多信息(基于RF距离)。

结论

基于我们新的局部搜索算法的RF超树问题启发式算法,首次使得通过直接优化从有根输入树到超树的RF距离来估计大型超树成为可能。这提供了一种新的快速方法来构建准确的超树。RF超树也可能有助于估计多数规则(-)超树,它是多数规则一致树的一种推广。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6163/2846952/7c1acd43e3eb/1748-7188-5-18-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验