Department of Computer Science, Iowa State University, Ames, IA 50011, U.S.A.
Evol Bioinform Online. 2007 Feb 28;2:347-56.
The utility of the matrix representation with flipping (MRF) supertree method has been limited by the speed of its heuristic algorithms. We describe a new heuristic algorithm for MRF supertree construction that improves upon the speed of the previous heuristic by a factor of n (the number of taxa in the supertree). This new heuristic makes MRF tractable for large-scale supertree analyses and allows the first comparisons of MRF with other supertree methods using large empirical data sets. Analyses of three published supertree data sets with between 267 to 571 taxa indicate that MRF supertrees are equally or more similar to the input trees on average than matrix representation with parsimony (MRP) and modified min-cut supertrees. The results also show that large differences may exist between MRF and MRP supertrees and demonstrate that the MRF supertree method is a practical and potentially more accurate alternative to the nearly ubiquitous MRP supertree method.
矩阵表示翻转(MRF)超树方法的实用性受到其启发式算法速度的限制。我们描述了一种新的 MRF 超树构建启发式算法,该算法通过因子 n(超树中分类单元的数量)提高了先前启发式算法的速度。这个新的启发式算法使得 MRF 可以用于大规模的超树分析,并允许首次使用大型经验数据集比较 MRF 与其他超树方法。对三个已发表的超树数据集(267 到 571 个分类单元)的分析表明,MRF 超树与输入树的平均相似度与矩阵表示简约法(MRP)和改进的最小切割超树相当或更高。结果还表明,MRF 和 MRP 超树之间可能存在较大差异,并证明 MRF 超树方法是一种实用且潜在更准确的替代几乎无处不在的 MRP 超树方法。