Suppr超能文献

利用整合网络生物学鉴定人类疾病的鉴别生物标志物。

Identification of discriminating biomarkers for human disease using integrative network biology.

作者信息

Dudley Joel T, Butte Atul J

机构信息

Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305-5479, USA.

出版信息

Pac Symp Biocomput. 2009:27-38.

Abstract

There is a strong clinical imperative to identify discerning molecular biomarkers of disease to inform diagnosis, prognosis, and treatment. Ideally, such biomarkers would be drawn from peripheral sources non-invasively to reduce costs and lower potential for complication. Advances in high-throughput genomics and proteomics have vastly increased the space of prospective molecular biomarkers. Consequently, the elucidation of molecular biomarkers of clinical importance often entails a genome- or proteome-wide search for candidates. Here we present a novel framework for the identification of disease-specific protein biomarkers through the integration of biofluid proteomes and inter-disease genomic relationships using a network paradigm. We created a blood plasma biomarker network by linking expression-based genomic profiles from 136 diseases to 1,028 detectable blood plasma proteins. We also created a urine biomarker network by linking genomic profiles from 127 diseases to 577 proteins detectable in urine. Through analysis of these molecular biomarker networks, we find that the majority (> 80%) of putative protein biomarkers are linked to multiple disease conditions. Thus, prospective disease-specific protein biomarkers are found in only a small subset of the biofluids proteomes. These findings illustrate the importance of considering shared molecular pathology across diseases when evaluating biomarker specificity. The proposed framework is amenable to integration with complimentary network models of biology, which could further constrain the biomarker candidate space, and establish a role for the understanding of multi-scale, inter-disease genomic relationships in biomarker discovery.

摘要

识别具有鉴别能力的疾病分子生物标志物以指导诊断、预后和治疗具有很强的临床紧迫性。理想情况下,此类生物标志物应来自外周源且为非侵入性,以降低成本并减少并发症的可能性。高通量基因组学和蛋白质组学的进展极大地增加了潜在分子生物标志物的范围。因此,阐明具有临床重要性的分子生物标志物通常需要在全基因组或全蛋白质组范围内寻找候选物。在此,我们提出了一个新颖的框架,通过使用网络范式整合生物流体蛋白质组和疾病间基因组关系来识别疾病特异性蛋白质生物标志物。我们通过将136种疾病基于表达的基因组图谱与1028种可检测到的血浆蛋白质相联系,创建了一个血浆生物标志物网络。我们还通过将127种疾病的基因组图谱与尿液中可检测到的577种蛋白质相联系,创建了一个尿液生物标志物网络。通过对这些分子生物标志物网络的分析,我们发现大多数(>80%)推定的蛋白质生物标志物与多种疾病状况相关。因此,前瞻性疾病特异性蛋白质生物标志物仅存在于生物流体蛋白质组的一小部分中。这些发现说明了在评估生物标志物特异性时考虑跨疾病共享分子病理学的重要性。所提出的框架适合与生物学的互补网络模型整合,这可以进一步限制生物标志物候选物空间,并为理解多尺度、疾病间基因组关系在生物标志物发现中的作用奠定基础。

相似文献

引用本文的文献

2
Human disease biomarker panels through systems biology.通过系统生物学构建人类疾病生物标志物组合
Biophys Rev. 2021 Oct 13;13(6):1179-1190. doi: 10.1007/s12551-021-00849-y. eCollection 2021 Dec.
9
Biomarker discovery in mass spectrometry-based urinary proteomics.基于质谱的尿液蛋白质组学中的生物标志物发现
Proteomics Clin Appl. 2016 Apr;10(4):358-70. doi: 10.1002/prca.201500102. Epub 2016 Feb 11.

本文引用的文献

3
Surfactant collectins and innate immunity.表面活性剂蛋白与固有免疫
Neonatology. 2008;93(4):288-94. doi: 10.1159/000121454. Epub 2008 Jun 5.
7
Genomic and genetic biomarkers of toxicity.毒性的基因组和遗传生物标志物。
Toxicology. 2008 Mar 20;245(3):175-81. doi: 10.1016/j.tox.2007.11.013. Epub 2007 Nov 28.
9
The human disease network.人类疾病网络。
Proc Natl Acad Sci U S A. 2007 May 22;104(21):8685-90. doi: 10.1073/pnas.0701361104. Epub 2007 May 14.
10
Inflammatory bowel disease: cause and immunobiology.炎症性肠病:病因与免疫生物学
Lancet. 2007 May 12;369(9573):1627-40. doi: 10.1016/S0140-6736(07)60750-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验