Suppr超能文献

识别跨界疾病传播的时空模式:以H5N1禽流感疫情为例

Identifying spatio-temporal patterns of transboundary disease spread: examples using avian influenza H5N1 outbreaks.

作者信息

Farnsworth Matthew L, Ward Michael P

机构信息

USDA, APHIS, VS, Center for Epidemiology, Fort Collins, Colorado 80526-8117, USA.

出版信息

Vet Res. 2009 May-Jun;40(3):20. doi: 10.1051/vetres/2009003. Epub 2009 Feb 13.

Abstract

Characterizing spatio-temporal patterns among epidemics in which the mechanism of spread is uncertain is important for generating disease spread hypotheses, which may in turn inform disease control and prevention strategies. Using a dataset representing three phases of highly pathogenic avian influenza H5N1 outbreaks in village poultry in Romania, 2005-2006, spatiotemporal patterns were characterized. We first fit a set of hierarchical Bayesian models that quantified changes in the spatio-temporal relative risk for each of the 23 affected counties. We then modeled spatial synchrony in each of the three epidemic phases using non-parametric covariance functions and Thin Plate Spline regression models. We found clear differences in the spatio-temporal patterns among the epidemic phases (local versus regional correlated processes), which may indicate differing spread mechanisms (for example wild bird versus human-mediated). Elucidating these patterns allowed us to postulate that a shift in the primary mechanism of disease spread may have taken place between the second and third phases of this epidemic. Information generated by such analyses could assist affected countries in determining the most appropriate control programs to implement, and to allocate appropriate resources to preventing contact between domestic poultry and wild birds versus enforcing bans on poultry movements and quarantine. The methods used in this study could be applied in many different situations to analyze transboundary disease data in which only location and time of occurrence data are reported.

摘要

在传播机制尚不确定的流行病中,刻画其时空模式对于生成疾病传播假设非常重要,而这些假设反过来又可为疾病控制和预防策略提供依据。利用一个代表2005 - 2006年罗马尼亚乡村家禽高致病性禽流感H5N1疫情三个阶段的数据集,对时空模式进行了刻画。我们首先拟合了一组分层贝叶斯模型,以量化23个受影响县中每个县的时空相对风险变化。然后,我们使用非参数协方差函数和薄板样条回归模型对三个疫情阶段中的每个阶段的空间同步性进行建模。我们发现疫情阶段之间的时空模式存在明显差异(局部与区域相关过程),这可能表明传播机制不同(例如野生鸟类传播与人为主导传播)。阐明这些模式使我们能够推测,在该疫情的第二阶段和第三阶段之间,疾病传播的主要机制可能发生了转变。此类分析所产生的信息可帮助受影响国家确定最适合实施的控制方案,并为防止家禽与野生鸟类接触以及执行家禽移动禁令和检疫措施分配适当资源。本研究中使用的方法可应用于许多不同情况,以分析仅报告了发生地点和时间数据的跨境疾病数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc94/2695035/41d5f9a24de5/vetres-40-20-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验