Dasgupta Biplab, Milbrandt Jeffrey
Department of Pathology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
Dev Cell. 2009 Feb;16(2):256-70. doi: 10.1016/j.devcel.2009.01.005.
AMP-activated protein kinase (AMPK) is an evolutionarily conserved metabolic sensor that responds to alterations in cellular energy levels to maintain energy balance. While its role in metabolic homeostasis is well documented, its role in mammalian development is less clear. Here we demonstrate that mutant mice lacking the regulatory AMPK beta1 subunit have profound brain abnormalities. The beta1(-/-) mice show atrophy of the dentate gyrus and cerebellum, and severe loss of neurons, oligodendrocytes, and myelination throughout the central nervous system. These abnormalities stem from reduced AMPK activity, with ensuing cell cycle defects in neural stem and progenitor cells (NPCs). The beta1(-/-) NPC deficits result from hypophosphorylation of the retinoblastoma protein (Rb), which is directly phosphorylated by AMPK at Ser(804). The AMPK-Rb axis is utilized by both growth factors and energy restriction to increase NPC growth. Our results reveal that AMPK integrates growth factor signaling with cell cycle control to regulate brain development.
AMP激活的蛋白激酶(AMPK)是一种在进化上保守的代谢传感器,可响应细胞能量水平的变化以维持能量平衡。虽然其在代谢稳态中的作用已有充分记录,但其在哺乳动物发育中的作用尚不清楚。在此,我们证明缺乏调节性AMPKβ1亚基的突变小鼠存在严重的脑部异常。β1(-/-)小鼠表现出海马齿状回和小脑萎缩,并且在整个中枢神经系统中神经元、少突胶质细胞严重丢失以及髓鞘形成减少。这些异常源于AMPK活性降低,随后神经干细胞和祖细胞(NPCs)出现细胞周期缺陷。β1(-/-)NPC缺陷是由视网膜母细胞瘤蛋白(Rb)的磷酸化不足导致的,Rb在Ser(804)位点被AMPK直接磷酸化。生长因子和能量限制均利用AMPK-Rb轴来促进NPC生长。我们的结果表明,AMPK将生长因子信号与细胞周期控制整合起来以调节大脑发育。