Suppr超能文献

正在形成的牙釉质中的瞬态无定形磷酸钙。

Transient amorphous calcium phosphate in forming enamel.

作者信息

Beniash Elia, Metzler Rebecca A, Lam Raymond S K, Gilbert P U P A

机构信息

University of Pittsburgh School of Dental Medicine, Department of Oral Biology, Pittsburgh, PA 15261, USA.

出版信息

J Struct Biol. 2009 May;166(2):133-43. doi: 10.1016/j.jsb.2009.02.001. Epub 2009 Feb 13.

Abstract

Enamel, the hardest tissue in the body, begins as a three-dimensional network of nanometer size mineral particles, suspended in a protein gel. This mineral network serves as a template for mature enamel formation. To further understand the mechanisms of enamel formation we characterized the forming enamel mineral at an early secretory stage using X-ray absorption near-edge structure (XANES) spectromicroscopy, transmission electron microscopy (TEM), FTIR microspectroscopy and polarized light microscopy. We show that the newly formed enamel mineral is amorphous calcium phosphate (ACP), which eventually transforms into apatitic crystals. Interestingly, the size, shape and spatial organization of these amorphous mineral particles and older crystals are essentially the same, indicating that the mineral morphology and organization in enamel is determined prior to its crystallization. Mineralization via transient amorphous phases has been previously reported in chiton teeth, mollusk shells, echinoderm spicules and spines, and recent reports strongly suggest the presence of transient amorphous mineral in forming vertebrate bones. The present finding of transient ACP in murine tooth enamel suggests that this strategy might be universal.

摘要

牙釉质是人体中最坚硬的组织,最初是由纳米级矿物颗粒构成的三维网络,悬浮在蛋白质凝胶中。这种矿物网络是成熟牙釉质形成的模板。为了进一步了解牙釉质形成的机制,我们使用X射线吸收近边结构(XANES)光谱显微镜、透射电子显微镜(TEM)、傅里叶变换红外光谱显微镜和偏光显微镜,对早期分泌阶段正在形成的牙釉质矿物进行了表征。我们发现新形成的牙釉质矿物是无定形磷酸钙(ACP),最终会转变为磷灰石晶体。有趣的是,这些无定形矿物颗粒和较老晶体的大小、形状和空间组织基本相同,这表明牙釉质中的矿物形态和组织在结晶之前就已确定。先前在石鳖牙齿、软体动物贝壳、棘皮动物的骨针和刺中报道过通过短暂无定形相进行矿化,最近的报道有力地表明在正在形成的脊椎动物骨骼中存在短暂无定形矿物。在小鼠牙釉质中发现短暂存在的ACP表明这种策略可能具有普遍性。

相似文献

1
Transient amorphous calcium phosphate in forming enamel.
J Struct Biol. 2009 May;166(2):133-43. doi: 10.1016/j.jsb.2009.02.001. Epub 2009 Feb 13.
2
Biomimetic remineralization of demineralized enamel with nano-complexes of phosphorylated chitosan and amorphous calcium phosphate.
J Mater Sci Mater Med. 2014 Dec;25(12):2619-28. doi: 10.1007/s10856-014-5285-2. Epub 2014 Jul 30.
3
Dental materials. Amorphous intergranular phases control the properties of rodent tooth enamel.
Science. 2015 Feb 13;347(6223):746-50. doi: 10.1126/science.1258950.
7
Regulation of calcium phosphate formation by amelogenins under physiological conditions.
Eur J Oral Sci. 2011 Dec;119 Suppl 1(Suppl 1):103-11. doi: 10.1111/j.1600-0722.2011.00911.x.
8
Amelogenin-collagen interactions regulate calcium phosphate mineralization in vitro.
J Biol Chem. 2010 Jun 18;285(25):19277-87. doi: 10.1074/jbc.M109.079939. Epub 2010 Apr 19.
9
Role of amelogenin phosphorylation in regulating dental enamel formation.
Matrix Biol. 2024 Aug;131:17-29. doi: 10.1016/j.matbio.2024.05.004. Epub 2024 May 16.
10
Role of 20-kDa amelogenin (P148) phosphorylation in calcium phosphate formation in vitro.
J Biol Chem. 2009 Jul 10;284(28):18972-9. doi: 10.1074/jbc.M109.020370. Epub 2009 May 14.

引用本文的文献

1
Impact of Mg and pH on amorphous calcium carbonate nanoparticle formation: Implications for biomineralization and ocean acidification.
Proc Natl Acad Sci U S A. 2025 May 13;122(19):e2421961122. doi: 10.1073/pnas.2421961122. Epub 2025 May 9.
2
Identification and elemental mapping of enamel minerals with electron energy-loss spectroscopy.
RSC Adv. 2025 May 7;15(19):14848-14858. doi: 10.1039/d4ra08124b. eCollection 2025 May 6.
3
A tough soft-hard interface in the human knee joint driven by multiscale toughening mechanisms.
Proc Natl Acad Sci U S A. 2025 Jan 28;122(4):e2416085122. doi: 10.1073/pnas.2416085122. Epub 2025 Jan 24.
5
Stratification of fluoride uptake among enamel crystals with age elucidated by atom probe tomography.
Commun Mater. 2024;5(1):270. doi: 10.1038/s43246-024-00709-8. Epub 2024 Dec 19.
6
Classical View on Nonclassical Crystal Growth in a Biological Setting.
J Am Chem Soc. 2025 Jan 8;147(1):1-9. doi: 10.1021/jacs.4c11940. Epub 2024 Dec 16.
7
Hierarchical evolution of bone biomimicry and osteo-coagulo-immunomodulation induced by the size of biological hydroxyapatite.
Hua Xi Kou Qiang Yi Xue Za Zhi. 2024 Dec 1;42(6):706-715. doi: 10.7518/hxkq.2024.2024315.
8
A Novel Nano-Hydroxyapatite Agarose-Based Hydrogel for Biomimetic Remineralization of Demineralized Human Enamel: An in-vitro Study.
Clin Cosmet Investig Dent. 2024 Nov 2;16:453-465. doi: 10.2147/CCIDE.S478045. eCollection 2024.
9
Ameloblastin and its multifunctionality in amelogenesis: A review.
Matrix Biol. 2024 Aug;131:62-76. doi: 10.1016/j.matbio.2024.05.007. Epub 2024 May 28.
10
Role of amelogenin phosphorylation in regulating dental enamel formation.
Matrix Biol. 2024 Aug;131:17-29. doi: 10.1016/j.matbio.2024.05.004. Epub 2024 May 16.

本文引用的文献

1
Gradual ordering in red abalone nacre.
J Am Chem Soc. 2008 Dec 24;130(51):17519-27. doi: 10.1021/ja8065495.
2
Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule.
Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17362-6. doi: 10.1073/pnas.0806604105. Epub 2008 Nov 5.
3
Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: Indications for an amorphous precursor phase.
Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):12748-53. doi: 10.1073/pnas.0803354105. Epub 2008 Aug 27.
4
The dynamics of secretion during sea urchin embryonic skeleton formation.
Exp Cell Res. 2008 May 1;314(8):1744-52. doi: 10.1016/j.yexcr.2008.01.036. Epub 2008 Mar 10.
5
Probing the organic-mineral interface at the molecular level in model biominerals.
Langmuir. 2008 Mar 18;24(6):2680-7. doi: 10.1021/la7031237. Epub 2008 Feb 6.
6
Transformation of amorphous calcium phosphate to crystalline dahillite in the radular teeth of chitons.
Science. 1985 Jan 4;227(4682):51-3. doi: 10.1126/science.227.4682.51.
7
pH triggered self-assembly of native and recombinant amelogenins under physiological pH and temperature in vitro.
J Struct Biol. 2007 Oct;160(1):57-69. doi: 10.1016/j.jsb.2007.06.007. Epub 2007 Jul 4.
8
Architecture of columnar nacre, and implications for its formation mechanism.
Phys Rev Lett. 2007 Jun 29;98(26):268102. doi: 10.1103/PhysRevLett.98.268102.
9
Micelle structure of amelogenin in porcine secretory enamel.
J Dent Res. 2007 Aug;86(8):758-63. doi: 10.1177/154405910708600814.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验