Suppr超能文献

在机械刺激下,单根微管和小网络在短时间尺度上显著变硬。

Single microtubules and small networks become significantly stiffer on short time-scales upon mechanical stimulation.

机构信息

Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 102, 79110, Freiburg, Germany.

Lewis-Sigler Institute for Integrative Genomics, Princeton University, Washington Rd, Princeton, NJ, 08544, USA.

出版信息

Sci Rep. 2017 Jun 26;7(1):4229. doi: 10.1038/s41598-017-04415-z.

Abstract

The transfer of mechanical signals through cells is a complex phenomenon. To uncover a new mechanotransduction pathway, we study the frequency-dependent transport of mechanical stimuli by single microtubules and small networks in a bottom-up approach using optically trapped beads as anchor points. We interconnected microtubules to linear and triangular geometries to perform micro-rheology by defined oscillations of the beads relative to each other. We found a substantial stiffening of single filaments above a characteristic transition frequency of 1-30 Hz depending on the filament's molecular composition. Below this frequency, filament elasticity only depends on its contour and persistence length. Interestingly, this elastic behavior is transferable to small networks, where we found the surprising effect that linear two filament connections act as transistor-like, angle dependent momentum filters, whereas triangular networks act as stabilizing elements. These observations implicate that cells can tune mechanical signals by temporal and spatial filtering stronger and more flexibly than expected.

摘要

细胞间机械信号的传递是一个复杂的现象。为了揭示新的力转导途径,我们采用自下而上的方法,使用光学捕获珠作为固定点,研究了机械刺激在单根微管和小网络中的频率相关传输。我们将微管连接成线性和三角形结构,通过珠相对于彼此的定义振动进行微流变学。我们发现,在 1-30 Hz 的特征转换频率之上,单根微丝的硬度显著增加,这取决于微丝的分子组成。在这个频率以下,微丝的弹性仅取决于其轮廓和持久长度。有趣的是,这种弹性行为可以转移到小网络中,我们发现了一个令人惊讶的现象,即线性双丝连接表现得像晶体管一样,具有角度依赖性的动量滤波器,而三角形网络则起到稳定元件的作用。这些观察结果表明,细胞可以通过时间和空间过滤来调整机械信号,其强度和灵活性都超出了预期。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d46b/5484680/d004da0eb921/41598_2017_4415_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验