Roopun Anita K, Kramer Mark A, Carracedo Lucy M, Kaiser Marcus, Davies Ceri H, Traub Roger D, Kopell Nancy J, Whittington Miles A
Institute of Neuroscience, Newcastle University Newcastle, UK.
Front Neurosci. 2008 Dec 15;2(2):145-54. doi: 10.3389/neuro.01.034.2008. eCollection 2008 Dec.
Multiple local neuronal circuits support different, discrete frequencies of network rhythm in neocortex. Relationships between different frequencies correspond to mechanisms designed to minimise interference, couple activity via stable phase interactions, and control the amplitude of one frequency relative to the phase of another. These mechanisms are proposed to form a framework for spectral information processing. Individual local circuits can also transform their frequency through changes in intrinsic neuronal properties and interactions with other oscillating microcircuits. Here we discuss a frequency transformation in which activity in two co-active local circuits may combine sequentially to generate a third frequency whose period is the concatenation sum of the original two. With such an interaction, the intrinsic periodicity in each component local circuit is preserved - alternate, single periods of each original rhythm form one period of a new frequency - suggesting a robust mechanism for combining information processed on multiple concurrent spatiotemporal scales.
多个局部神经元回路支持新皮层中不同的、离散的网络节律频率。不同频率之间的关系对应着旨在最小化干扰、通过稳定的相位相互作用耦合活动以及控制一个频率相对于另一个频率相位的幅度的机制。这些机制被认为构成了一个频谱信息处理的框架。单个局部回路也可以通过内在神经元特性的变化以及与其他振荡微回路的相互作用来改变其频率。在这里,我们讨论一种频率变换,其中两个共同活动的局部回路中的活动可能会顺序组合,以产生第三个频率,其周期是原始两个频率周期的串联总和。通过这种相互作用,每个组成局部回路中的内在周期性得以保留——每个原始节律的交替单周期形成一个新频率的一个周期——这表明存在一种强大的机制,用于组合在多个并发时空尺度上处理的信息。