Epidemiology and Data Science (EDS), Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
Drug Saf. 2022 Sep;45(9):961-970. doi: 10.1007/s40264-022-01208-w. Epub 2022 Jul 15.
Patients participating in randomized controlled trials (RCTs) are susceptible to a wide range of different adverse events (AE) during the RCT. MedDRA is a hierarchical standardization terminology to structure the AEs reported in an RCT. The lowest level in the MedDRA hierarchy is a single medical event, and every higher level is the aggregation of the lower levels.
We propose a multi-stage Bayesian hierarchical Poisson model for estimating MedDRA-coded AE rate ratios (RRs). To deal with rare AEs, we introduce data aggregation at a higher level within the MedDRA structure and based on thresholds on incidence and MedDRA structure.
With simulations, we showed the effects of this data aggregation process and the method's performance. Furthermore, an application to a real example is provided and compared with other methods.
We showed the benefit of using the full MedDRA structure and using aggregated data. The proposed model, as well as the pre-processing, is implemented in an R-package: BAHAMA.
参与随机对照试验(RCT)的患者在 RCT 期间易受到各种不同的不良事件(AE)的影响。MedDRA 是一种层次化的标准化术语,用于对 RCT 中报告的 AE 进行结构化。MedDRA 层次结构的最低级别是单个医疗事件,每个更高的级别都是较低级别聚合的结果。
我们提出了一种多阶段贝叶斯分层泊松模型,用于估计 MedDRA 编码的 AE 率比(RR)。为了处理罕见的 AE,我们在 MedDRA 结构内并基于发生率和 MedDRA 结构的阈值引入了更高层次的数据聚合。
通过模拟,我们展示了这种数据聚合过程的效果和方法的性能。此外,还提供了一个实际示例的应用,并与其他方法进行了比较。
我们展示了充分利用 MedDRA 结构和使用聚合数据的好处。所提出的模型以及预处理已在 R 包 BAHAMA 中实现。