Suppr超能文献

将功能磁共振成像(fMRI)与脑电图(EEG)和脑磁图(MEG)相结合,以便将大脑活动模式与认知联系起来。

Combining fMRI with EEG and MEG in order to relate patterns of brain activity to cognition.

作者信息

Freeman Walter J, Ahlfors Seppo P, Menon Vinod

机构信息

Department of Molecular & Cell Biology, University of California MC 3206, Berkeley CA 94720 USA.

出版信息

Int J Psychophysiol. 2009 Jul;73(1):43-52. doi: 10.1016/j.ijpsycho.2008.12.019. Epub 2009 Feb 20.

Abstract

The common factor that underlies several types of functional brain imaging is the electric current of masses of dendrites. The prodigious demands for the energy that is required to drive the dendritic currents are met by hemodynamic and metabolic responses that are visualized with fMRI and PET techniques. The high current densities in parallel dendritic shafts and the broad distributions of the loop currents outside the dendrites generate both the scalp EEG and the magnetic fields seen in the MEG. The measurements of image intensities and potential fields provide state variables for modeling. The relationships between the intensities of current density and the electric, magnetic, and hemodynamic state variables are complex and far from proportionate. The state variables are complementary, because the information they convey comes from differing albeit overlapping neural populations, so that efforts to cross-validate localization of neural activity relating to specified cognitive behaviors have not always been successful. We propose an alternative way to use the three methods in combination through studies of hemisphere-wide, high-resolution spatiotemporal patterns of neural activity recorded non-invasively and analyzed with multivariate statistics. Success in this proposed endeavor requires specification of what patterns to look for. At the present level of understanding, an appropriate pattern is any significant departure from random noise in the spectral, temporal and spatial domains that can be scaled into the coarse-graining of time by fMRI/BOLD and the coarse-graining of space by EEG and MEG. Here the requisite patterns are predicted to be large-scale spatial amplitude modulation (AM) of synchronized neuronal signals in the beta and gamma ranges that are coordinated but not correlated with fMRI intensities.

摘要

几种功能性脑成像的共同基础因素是大量树突的电流。驱动树突电流所需的巨大能量需求通过功能磁共振成像(fMRI)和正电子发射断层扫描(PET)技术可视化的血液动力学和代谢反应来满足。平行树突轴中的高电流密度以及树突外环路电流的广泛分布产生了头皮脑电图(EEG)和脑磁图(MEG)中所见的磁场。图像强度和势场的测量为建模提供了状态变量。电流密度强度与电、磁和血液动力学状态变量之间的关系复杂且远非成比例。这些状态变量是互补的,因为它们传达的信息来自不同但有重叠的神经群体,所以试图交叉验证与特定认知行为相关的神经活动定位并不总是成功的。我们提出了一种通过研究非侵入性记录并用多变量统计分析的全脑高分辨率时空神经活动模式来联合使用这三种方法的替代方法。在这项提议的努力中取得成功需要明确要寻找的模式。在目前的理解水平上,合适的模式是在频谱、时间和空间域中与随机噪声有任何显著差异的模式,这些模式可以通过fMRI/血氧水平依赖(BOLD)按时间粗粒化,并通过EEG和MEG按空间粗粒化。这里预测所需的模式是在β和γ范围内同步神经元信号的大规模空间幅度调制(AM),这些信号相互协调但与fMRI强度不相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66e5/2746494/65e25ca94871/nihms97434f1.jpg

相似文献

引用本文的文献

1
Two methodologies for brain signal analysis derived from Freeman Neurodynamics.源自弗里曼神经动力学的两种脑信号分析方法。
Front Syst Neurosci. 2025 Apr 15;19:1570231. doi: 10.3389/fnsys.2025.1570231. eCollection 2025.
5
20 years of the default mode network: A review and synthesis.20 年的默认模式网络:回顾与综合。
Neuron. 2023 Aug 16;111(16):2469-2487. doi: 10.1016/j.neuron.2023.04.023. Epub 2023 May 10.

本文引用的文献

5
Neuroscience. Imaging astrocyte activity.神经科学。对星形胶质细胞活动进行成像。
Science. 2008 Jun 20;320(5883):1597-9. doi: 10.1126/science.1160122.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验