Areces-Gonzalez Ariosky, Paz-Linares Deirel, Riaz Usama, Wang Ying, Li Min, Razzaq Fuleah A, Bosch-Bayard Jorge F, Gonzalez-Moreira Eduardo, Ontivero-Ortega Marlis, Galan-Garcia Lidice, Martínez-Montes Eduardo, Minati Ludovico, Valdes-Sosa Mitchell J, Bringas-Vega Maria L, Valdes-Sosa Pedro A
The Clinical Hospital of Chengdu Brain Sciences Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
School of Technical Sciences, University "Hermanos Saiz Montes de Oca" of Pinar del Río, Pinar del Rio, Cuba.
Front Neurosci. 2024 Apr 12;18:1237245. doi: 10.3389/fnins.2024.1237245. eCollection 2024.
We present CiftiStorm, an electrophysiological source imaging (ESI) pipeline incorporating recently developed methods to improve forward and inverse solutions. The CiftiStorm pipeline produces Human Connectome Project (HCP) and megconnectome-compliant outputs from dataset inputs with varying degrees of spatial resolution. The input data can range from low-sensor-density electroencephalogram (EEG) or magnetoencephalogram (MEG) recordings without structural magnetic resonance imaging (sMRI) to high-density EEG/MEG recordings with an HCP multimodal sMRI compliant protocol. CiftiStorm introduces a numerical quality control of the lead field and geometrical corrections to the head and source models for forward modeling. For the inverse modeling, we present a Bayesian estimation of the cross-spectrum of sources based on multiple priors. We facilitate ESI in the T1w/FSAverage32k high-resolution space obtained from individual sMRI. We validate this feature by comparing CiftiStorm outputs for EEG and MRI data from the Cuban Human Brain Mapping Project (CHBMP) acquired with technologies a decade before the HCP MEG and MRI standardized dataset.
我们展示了CiftiStorm,这是一种电生理源成像(ESI)流程,它结合了最近开发的方法来改进正向和逆向解决方案。CiftiStorm流程能够从具有不同空间分辨率的数据集输入中生成符合人类连接体计划(HCP)和meg连接体标准的输出。输入数据的范围可以从没有结构磁共振成像(sMRI)的低传感器密度脑电图(EEG)或脑磁图(MEG)记录,到采用符合HCP多模态sMRI标准协议的高密度EEG/MEG记录。CiftiStorm在正向建模中引入了对导联场的数值质量控制以及对头模型和源模型的几何校正。对于逆向建模,我们基于多个先验提出了源交叉谱的贝叶斯估计。我们在从个体sMRI获得的T1w/FSAverage32k高分辨率空间中促进ESI。我们通过比较CiftiStorm对古巴人脑图谱项目(CHBMP)的EEG和MRI数据的输出进行验证,这些数据是在HCP MEG和MRI标准化数据集之前十年采用相关技术采集的。