Suppr超能文献

一种通过空间相关性融合功能磁共振成像任务的方法:应用于精神分裂症。

A method to fuse fMRI tasks through spatial correlations: applied to schizophrenia.

作者信息

Michael Andrew M, Baum Stefi A, Fries Jill F, Ho Beng-Choon, Pierson Ronald K, Andreasen Nancy C, Calhoun Vince D

机构信息

The Mind Research Network, Albuquerque, NM 87131, USA.

出版信息

Hum Brain Mapp. 2009 Aug;30(8):2512-29. doi: 10.1002/hbm.20691.

Abstract

Single task analysis methods of functional MRI brain data, though useful, are not able to evaluate the joint information between tasks. Data fusion of multiple tasks that probe different cognitive processes provides knowledge of the joint information and may be important in order to better understand complex disorders such as schizophrenia. In this article, we introduce a simple but effective technique to fuse two tasks by computing the histogram of correlations for all possible combinations of whole brain voxels. The approach was applied to data derived from healthy controls and patients with schizophrenia from four different tasks, auditory oddball (target), auditory oddball (novel), Sternberg working memory, and sensorimotor. It was found that in four out of six task combinations patients' intertask correlations were more positively correlated than controls', in one combination the controls showed more positive correlations and in another there was no significant difference. The robustness of this result was checked with several testing techniques. The four task combinations for which patients had more positive correlation occurred at different scanning sessions and the task combination that showed the opposite result occurred within the same scanning session. Brain regions that showed high intertask correlations were found for both groups and regions that correlated differently between the two groups were identified. The approach introduced finds interesting results and new differential features that cannot be achieved through traditional methods.

摘要

功能磁共振成像(fMRI)脑数据的单任务分析方法虽然有用,但无法评估任务之间的联合信息。对探测不同认知过程的多个任务进行数据融合,可以提供联合信息的知识,对于更好地理解诸如精神分裂症等复杂疾病可能很重要。在本文中,我们介绍一种简单但有效的技术,通过计算全脑体素所有可能组合的相关性直方图来融合两个任务。该方法应用于来自健康对照者和精神分裂症患者的四个不同任务的数据,即听觉奇偶数(目标)、听觉奇偶数(新颖)、斯特恩伯格工作记忆和感觉运动任务。结果发现,在六个任务组合中的四个组合中,患者的任务间相关性比对照组更呈正相关,在一个组合中对照组显示出更强的正相关性,而在另一个组合中则没有显著差异。用几种测试技术检验了该结果的稳健性。患者具有更强正相关性的四个任务组合发生在不同的扫描时段,而显示相反结果的任务组合发生在同一扫描时段内。两组均发现了显示高任务间相关性的脑区,并确定了两组之间相关性不同的脑区。所介绍的方法发现了有趣的结果和新的差异特征,这些是传统方法无法实现的。

相似文献

引用本文的文献

本文引用的文献

1
The Monte Carlo method.蒙特卡罗方法。
J Am Stat Assoc. 1949 Sep;44(247):335-41. doi: 10.1080/01621459.1949.10483310.
3
A review of diffusion tensor imaging studies in schizophrenia.精神分裂症弥散张量成像研究综述。
J Psychiatr Res. 2007 Jan-Feb;41(1-2):15-30. doi: 10.1016/j.jpsychires.2005.05.005. Epub 2005 Jul 14.
4
The global prevalence of schizophrenia.精神分裂症的全球患病率。
PLoS Med. 2005 May;2(5):e151; quiz e175. doi: 10.1371/journal.pmed.0020151. Epub 2005 May 31.
8
A disturbance of nonlinear interdependence in scalp EEG of subjects with first episode schizophrenia.
Neuroimage. 2003 Sep;20(1):466-78. doi: 10.1016/s1053-8119(03)00332-x.
9
Dynamic causal modelling.动态因果模型
Neuroimage. 2003 Aug;19(4):1273-302. doi: 10.1016/s1053-8119(03)00202-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验