Suppr超能文献

利用多因子降维方法在存在缺失数据的情况下识别基因-基因相互作用。

Identification of gene-gene interactions in the presence of missing data using the multifactor dimensionality reduction method.

机构信息

Bioinformatics Program, Seoul National University, Seoul, Korea.

出版信息

Genet Epidemiol. 2009 Nov;33(7):646-56. doi: 10.1002/gepi.20416.

Abstract

Gene-gene interaction is believed to play an important role in understanding complex traits. Multifactor dimensionality reduction (MDR) was proposed by Ritchie et al. [2001. Am J Hum Genet 69:138-147] to identify multiple loci that simultaneously affect disease susceptibility. Although the MDR method has been widely used to detect gene-gene interactions, few studies have been reported on MDR analysis when there are missing data. Currently, there are four approaches available in MDR analysis to handle missing data. The first approach uses only complete observations that have no missing data, which can cause a severe loss of data. The second approach is to treat missing values as an additional genotype category, but interpretation of the results may then be not clear and the conclusions may be misleading. Furthermore, it performs poorly when the missing rates are unbalanced between the case and control groups. The third approach is a simple imputation method that imputes missing genotypes as the most frequent genotype, which may also produce biased results. The fourth approach, Available, uses all data available for the given loci to increase power. In any real data analysis, it is not clear which MDR approach one should use when there are missing data. In this article, we consider a new EM Impute approach to handle missing data more appropriately. Through simulation studies, we compared the performance of the proposed EM Impute approach with the current approaches. Our results showed that Available and EM Impute approaches perform better than the three other current approaches in terms of power and precision.

摘要

基因-基因相互作用被认为在理解复杂性状中起着重要作用。多因子维度缩减(MDR)方法由 Ritchie 等人提出[2001. Am J Hum Genet 69:138-147],用于识别同时影响疾病易感性的多个基因座。尽管 MDR 方法已广泛用于检测基因-基因相互作用,但在存在缺失数据的情况下,对 MDR 分析的研究较少。目前,MDR 分析中有四种方法可用于处理缺失数据。第一种方法仅使用没有缺失数据的完整观测值,这可能会导致严重的数据丢失。第二种方法是将缺失值视为额外的基因型类别,但结果的解释可能不清楚,结论可能会产生误导。此外,当缺失率在病例组和对照组之间不平衡时,该方法的性能会很差。第三种方法是一种简单的插补方法,将缺失的基因型插补为最常见的基因型,这也可能产生有偏差的结果。第四种方法,即 Available,使用给定基因座的所有可用数据来提高功效。在任何实际数据分析中,当存在缺失数据时,不清楚应该使用哪种 MDR 方法。在本文中,我们考虑了一种新的 EM 插补方法来更恰当地处理缺失数据。通过模拟研究,我们比较了所提出的 EM 插补方法与当前方法的性能。我们的结果表明,在功效和精度方面,Available 和 EM 插补方法优于其他三种当前方法。

相似文献

2
A novel method to identify gene-gene effects in nuclear families: the MDR-PDT.
Genet Epidemiol. 2006 Feb;30(2):111-23. doi: 10.1002/gepi.20128.
3
Log-linear model-based multifactor dimensionality reduction method to detect gene gene interactions.
Bioinformatics. 2007 Oct 1;23(19):2589-95. doi: 10.1093/bioinformatics/btm396. Epub 2007 Sep 14.
5
Odds ratio based multifactor-dimensionality reduction method for detecting gene-gene interactions.
Bioinformatics. 2007 Jan 1;23(1):71-6. doi: 10.1093/bioinformatics/btl557. Epub 2006 Nov 8.
7
An empirical fuzzy multifactor dimensionality reduction method for detecting gene-gene interactions.
BMC Genomics. 2017 Mar 14;18(Suppl 2):115. doi: 10.1186/s12864-017-3496-x.
9
Model-based multifactor dimensionality reduction for detecting epistasis in case-control data in the presence of noise.
Ann Hum Genet. 2011 Jan;75(1):78-89. doi: 10.1111/j.1469-1809.2010.00604.x. Epub 2010 Sep 8.

引用本文的文献

1
Review on GPU accelerated methods for genome-wide SNP-SNP interactions.
Mol Genet Genomics. 2024 Dec 29;300(1):10. doi: 10.1007/s00438-024-02214-6.
2
Gene-Gene Interaction Analysis for the Survival Phenotype Based on the Kaplan-Meier Median Estimate.
Biomed Res Int. 2020 May 9;2020:5282345. doi: 10.1155/2020/5282345. eCollection 2020.
3
A survey about methods dedicated to epistasis detection.
Front Genet. 2015 Sep 10;6:285. doi: 10.3389/fgene.2015.00285. eCollection 2015.
4
Bridging the gap between statistical and biological epistasis in Alzheimer's disease.
Biomed Res Int. 2015;2015:870123. doi: 10.1155/2015/870123. Epub 2015 May 17.
5
Cuckoo search epistasis: a new method for exploring significant genetic interactions.
Heredity (Edinb). 2014 Jun;112(6):666-74. doi: 10.1038/hdy.2014.4. Epub 2014 Feb 19.
6
A modified entropy-based approach for identifying gene-gene interactions in case-control study.
PLoS One. 2013 Jul 18;8(7):e69321. doi: 10.1371/journal.pone.0069321. Print 2013.
7
Gene-gene interaction analysis for the survival phenotype based on the Cox model.
Bioinformatics. 2012 Sep 15;28(18):i582-i588. doi: 10.1093/bioinformatics/bts415.
8
Multiple pathway-based genetic variations associated with tobacco related multiple primary neoplasms.
PLoS One. 2012;7(1):e30013. doi: 10.1371/journal.pone.0030013. Epub 2012 Jan 11.
9
Analysis of gene-gene interactions.
Curr Protoc Hum Genet. 2011 Jul;Chapter 1:Unit1.14. doi: 10.1002/0471142905.hg0114s70.
10
A dimension reduction approach for modeling multi-locus interaction in case-control studies.
Hum Hered. 2011;71(4):234-45. doi: 10.1159/000328842. Epub 2011 Jul 6.

本文引用的文献

2
Association analysis of sphingomyelinase 2 polymorphisms for the extrinsic type of atopic dermatitis in Koreans.
J Dermatol Sci. 2007 May;46(2):143-6. doi: 10.1016/j.jdermsci.2006.12.001. Epub 2007 Jan 8.
3
Odds ratio based multifactor-dimensionality reduction method for detecting gene-gene interactions.
Bioinformatics. 2007 Jan 1;23(1):71-6. doi: 10.1093/bioinformatics/btl557. Epub 2006 Nov 8.
4
Parallel multifactor dimensionality reduction: a tool for the large-scale analysis of gene-gene interactions.
Bioinformatics. 2006 Sep 1;22(17):2173-4. doi: 10.1093/bioinformatics/btl347. Epub 2006 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验