Suppr超能文献

多因素降维分析和惩罚逻辑回归在病例对照研究中检测基因-基因交互作用的效能。

Power of multifactor dimensionality reduction and penalized logistic regression for detecting gene-gene interaction in a case-control study.

机构信息

Division of Biostatistics, School of Public Health, University of Minnesota, Minnesota, USA.

出版信息

BMC Med Genet. 2009 Dec 4;10:127. doi: 10.1186/1471-2350-10-127.

Abstract

BACKGROUND

There is a growing awareness that interaction between multiple genes play an important role in the risk of common, complex multi-factorial diseases. Many common diseases are affected by certain genotype combinations (associated with some genes and their interactions). The identification and characterization of these susceptibility genes and gene-gene interaction have been limited by small sample size and large number of potential interactions between genes. Several methods have been proposed to detect gene-gene interaction in a case control study. The penalized logistic regression (PLR), a variant of logistic regression with L2 regularization, is a parametric approach to detect gene-gene interaction. On the other hand, the Multifactor Dimensionality Reduction (MDR) is a nonparametric and genetic model-free approach to detect genotype combinations associated with disease risk.

METHODS

We compared the power of MDR and PLR for detecting two-way and three-way interactions in a case-control study through extensive simulations. We generated several interaction models with different magnitudes of interaction effect. For each model, we simulated 100 datasets, each with 200 cases and 200 controls and 20 SNPs. We considered a wide variety of models such as models with just main effects, models with only interaction effects or models with both main and interaction effects. We also compared the performance of MDR and PLR to detect gene-gene interaction associated with acute rejection(AR) in kidney transplant patients.

RESULTS

In this paper, we have studied the power of MDR and PLR for detecting gene-gene interaction in a case-control study through extensive simulation. We have compared their performances for different two-way and three-way interaction models. We have studied the effect of different allele frequencies on these methods. We have also implemented their performance on a real dataset. As expected, none of these methods were consistently better for all data scenarios, but, generally MDR outperformed PLR for more complex models. The ROC analysis on the real dataset suggests that MDR outperforms PLR in detecting gene-gene interaction on the real dataset.

CONCLUSION

As one might expect, the relative success of each method is context dependent. This study demonstrates the strengths and weaknesses of the methods to detect gene-gene interaction.

摘要

背景

人们越来越意识到,多个基因的相互作用在常见的复杂多因素疾病的风险中起着重要作用。许多常见疾病受到某些基因型组合的影响(与某些基因及其相互作用有关)。由于样本量小和基因之间存在大量潜在相互作用,这些易感基因和基因-基因相互作用的鉴定和特征描述受到了限制。已经提出了几种方法来检测病例对照研究中的基因-基因相互作用。惩罚逻辑回归(PLR)是一种具有 L2 正则化的逻辑回归的变体,是一种用于检测基因-基因相互作用的参数方法。另一方面,多因子降维(MDR)是一种非参数和遗传模型自由的方法,用于检测与疾病风险相关的基因型组合。

方法

我们通过广泛的模拟比较了 MDR 和 PLR 在病例对照研究中检测双向和三向相互作用的能力。我们生成了几个具有不同相互作用效应大小的相互作用模型。对于每个模型,我们模拟了 100 个数据集,每个数据集包含 200 个病例和 200 个对照以及 20 个 SNP。我们考虑了各种模型,例如只有主效应的模型、只有相互作用效应的模型或既有主效应又有相互作用效应的模型。我们还比较了 MDR 和 PLR 检测肾移植患者急性排斥(AR)相关基因-基因相互作用的性能。

结果

在本文中,我们通过广泛的模拟研究了 MDR 和 PLR 在病例对照研究中检测基因-基因相互作用的能力。我们比较了它们在不同的双向和三向相互作用模型中的性能。我们研究了不同等位基因频率对这些方法的影响。我们还在真实数据集上实现了它们的性能。不出所料,这些方法在所有数据场景中都没有一致地更好,但通常情况下,对于更复杂的模型,MDR 优于 PLR。对真实数据集的 ROC 分析表明,在检测真实数据集上的基因-基因相互作用方面,MDR 优于 PLR。

结论

正如人们可能预期的那样,每种方法的相对成功是上下文相关的。本研究展示了这些方法检测基因-基因相互作用的优缺点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d080/2800840/b18b72ec2aec/1471-2350-10-127-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验