Department of Preventive Medicine, Eulji University, Daejeon, Republic of Korea.
Department of Statistics, University of Connecticut, Storrs, Connecticut, USA.
Biomed Res Int. 2020 May 9;2020:5282345. doi: 10.1155/2020/5282345. eCollection 2020.
In this study, we propose a simple and computationally efficient method based on the multifactor dimensional reduction algorithm to identify gene-gene interactions associated with the survival phenotype. The proposed method, referred to as KM-MDR, uses the Kaplan-Meier median survival time as a classifier. The KM-MDR method classifies multilocus genotypes into a binary attribute for high- or low-risk groups using median survival time and replaces balanced accuracy with log-rank test statistics as a score to determine the best model. Through intensive simulation studies, we compared the power of KM-MDR with that of Surv-MDR, Cox-MDR, and AFT-MDR. It was found that KM-MDR has a similar power to that of Surv-MDR, with less computing time, and has comparable power to that of Cox-MDR and AFT-MDR, even when there is a covariate effect. Furthermore, we apply KM-MDR to a real dataset of ovarian cancer patients from The Cancer Genome Atlas (TCGA).
在这项研究中,我们提出了一种简单且计算效率高的方法,基于多因素降维算法来识别与生存表型相关的基因-基因相互作用。所提出的方法称为 KM-MDR,使用 Kaplan-Meier 中位生存时间作为分类器。KM-MDR 方法使用中位生存时间将多基因座基因型分类为高风险或低风险组的二进制属性,并使用对数秩检验统计量代替平衡准确性作为分数来确定最佳模型。通过密集的模拟研究,我们比较了 KM-MDR 与 Surv-MDR、Cox-MDR 和 AFT-MDR 的功效。结果发现,KM-MDR 与 Surv-MDR 的功效相似,但计算时间更短,与 Cox-MDR 和 AFT-MDR 的功效相当,即使存在协变量效应。此外,我们将 KM-MDR 应用于来自癌症基因组图谱(TCGA)的卵巢癌患者的真实数据集。