Suppr超能文献

复杂性状基因关联研究中信息性联合效应的自动检测。

Automated detection of informative combined effects in genetic association studies of complex traits.

作者信息

Tahri-Daizadeh Nadia, Tregouet David-Alexandre, Nicaud Viviane, Manuel Nicolas, Cambien François, Tiret Laurence

机构信息

INSERM U525, Faculté de Médecine, Hôpital Pitié-Salpêtrière, 75634 Paris, France.

出版信息

Genome Res. 2003 Aug;13(8):1952-60. doi: 10.1101/gr.1254203.

Abstract

There is a growing body of evidence suggesting that the relationships between gene variability and common disease are more complex than initially thought and require the exploration of the whole polymorphism of candidate genes as well as several genes belonging to biological pathways. When the number of polymorphisms is relatively large and the structure of the relationships among them complex, the use of data mining tools to extract the relevant information is a necessity. Here, we propose an automated method for the detection of informative combined effects (DICE) among several polymorphisms (and nongenetic covariates) within the framework of association studies. The algorithm combines the advantages of the regressive approaches with those of data exploration tools. Importantly, DICE considers the problem of interaction between polymorphisms as an effect of interest and not as a nuisance effect. We illustrate the method with three applications on the relationship between (1). the P-selectin gene and myocardial infarction, (2). the cholesteryl ester transfer protein gene and plasma high-density-lipoprotein cholesterol concentration, and (3). genes of the renin-angiotensin-aldosterone system and myocardial infarction. The applications demonstrated that the method was able to recover results already found using other approaches, but in addition detected biologically sensible effects not previously described.

摘要

越来越多的证据表明,基因变异性与常见疾病之间的关系比最初认为的更为复杂,需要探索候选基因以及属于生物途径的多个基因的全基因多态性。当多态性数量相对较大且它们之间的关系结构复杂时,使用数据挖掘工具来提取相关信息是必要的。在此,我们提出一种在关联研究框架内检测多个多态性(和非遗传协变量)之间信息性联合效应(DICE)的自动化方法。该算法结合了回归方法和数据探索工具的优点。重要的是,DICE将多态性之间的相互作用问题视为感兴趣的效应,而不是干扰效应。我们通过三个应用实例来说明该方法,分别是(1)P-选择素基因与心肌梗死之间的关系,(2)胆固醇酯转运蛋白基因与血浆高密度脂蛋白胆固醇浓度之间的关系,以及(3)肾素-血管紧张素-醛固酮系统基因与心肌梗死之间的关系。这些应用表明,该方法能够重现使用其他方法已发现的结果,但此外还检测到了先前未描述的具有生物学意义的效应。

相似文献

引用本文的文献

3

本文引用的文献

1
The emperor's new methods.皇帝的新方法。
Am J Hum Genet. 2003 May;72(5):1084-7. doi: 10.1086/374826. Epub 2003 Apr 18.
2
Proteomics: the first decade and beyond.蛋白质组学:第一个十年及以后。
Nat Genet. 2003 Mar;33 Suppl:311-23. doi: 10.1038/ng1106.
10
Use of an artificial neural network to detect association between a disease and multiple marker genotypes.
Ann Hum Genet. 2001 Jan;65(Pt 1):95-107. doi: 10.1046/j.1469-1809.2001.6510095.x.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验