Sukhorukov Valerii M, Bereiter-Hahn Jürgen
Kinematic Cell Research, Institute for Cell Biology and Neurosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.
PLoS One. 2009;4(2):e4604. doi: 10.1371/journal.pone.0004604. Epub 2009 Feb 26.
Diffusion of inner membrane proteins is a prerequisite for correct functionality of mitochondria. The complicated structure of tubular, vesicular or flat cristae and their small connections to the inner boundary membrane impose constraints on the mobility of proteins making their diffusion a very complicated process. Therefore we investigate the molecular transport along the main mitochondrial axis using highly accurate computational methods. Diffusion is modeled on a curvilinear surface reproducing the shape of mitochondrial inner membrane (IM). Monte Carlo simulations are carried out for topologies resembling both tubular and lamellar cristae, for a range of physiologically viable crista sizes and densities. Geometrical confinement induces up to several-fold reduction in apparent mobility. IM surface curvature per se generates transient anomalous diffusion (TAD), while finite and stable values of projected diffusion coefficients are recovered in a quasi-normal regime for short- and long-time limits. In both these cases, a simple area-scaling law is found sufficient to explain limiting diffusion coefficients for permeable cristae junctions, while asymmetric reduction of the junction permeability leads to strong but predictable variations in molecular motion rate. A geometry-based model is given as an illustration for the time-dependence of diffusivity when IM has tubular topology. Implications for experimental observations of diffusion along mitochondria using methods of optical microscopy are drawn out: a non-homogenous power law is proposed as a suitable approach to TAD. The data demonstrate that if not taken into account appropriately, geometrical effects lead to significant misinterpretation of molecular mobility measurements in cellular curvilinear membranes.
内膜蛋白的扩散是线粒体正确发挥功能的前提条件。管状、囊状或扁平嵴的复杂结构以及它们与内膜边界膜的微小连接对蛋白质的流动性施加了限制,使得其扩散成为一个非常复杂的过程。因此,我们使用高精度计算方法研究沿线粒体主轴的分子运输。扩散是在再现线粒体内膜(IM)形状的曲面上进行建模的。针对一系列生理上可行的嵴尺寸和密度,对类似于管状和层状嵴的拓扑结构进行了蒙特卡罗模拟。几何限制导致表观迁移率降低数倍。IM表面曲率本身会产生瞬态反常扩散(TAD),而在短时间和长时间极限的准正态状态下,投影扩散系数会恢复到有限且稳定的值。在这两种情况下,发现一个简单的面积缩放定律足以解释可渗透嵴连接的极限扩散系数,而连接渗透率的不对称降低会导致分子运动速率出现强烈但可预测的变化。给出了一个基于几何的模型,用于说明当IM具有管状拓扑结构时扩散系数的时间依赖性。得出了对使用光学显微镜方法沿线粒体进行扩散实验观察的启示:提出了一种非均匀幂律作为处理TAD的合适方法。数据表明,如果没有适当考虑,几何效应会导致对细胞曲线膜中分子迁移率测量的重大误解。