Suppr超能文献

胰岛素颗粒的生物合成、运输与胞吐作用。

Insulin granule biogenesis, trafficking and exocytosis.

作者信息

Hou June Chunqiu, Min Le, Pessin Jeffrey E

机构信息

Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA.

出版信息

Vitam Horm. 2009;80:473-506. doi: 10.1016/S0083-6729(08)00616-X.

Abstract

It is becoming increasingly apparent that beta cell dysfunction resulting in abnormal insulin secretion is the essential element in the progression of patients from a state of impaired glucose tolerance to frank type 2 diabetes (Del Prato, 2003; Del Prato and Tiengo, 2001). Although extensive studies have examined the molecular, cellular and physiologic mechanisms of insulin granule biogenesis, sorting, and exocytosis the precise mechanisms controlling these processes and their dysregulation in the developed of diabetes remains an area of important investigation. We now know that insulin biogenesis initiates with the synthesis of preproinsulin in rough endoplastic reticulum and conversion of preproinsulin to proinsulin. Proinsulin begins to be packaged in the Trans-Golgi Network and is sorting into immature secretory granules. These immature granules become acidic via ATP-dependent proton pump and proinsulin undergoes proteolytic cleavage resulting the formation of insulin and C-peptide. During the granule maturation process, insulin is crystallized with zinc and calcium in the form of dense-core granules and unwanted cargo and membrane proteins undergo selective retrograde trafficking to either the constitutive trafficking pathway for secretion or to degradative pathways. The newly formed mature dense-core insulin granules populate two different intracellular pools, the readily releasable pools (RRP) and the reserved pool. These two distinct populations are thought to be responsible for the biphasic nature of insulin release in which the RRP granules are associated with the plasma membrane and undergo an acute calcium-dependent release accounting for first phase insulin secretion. In contrast, second phase insulin secretion requires the trafficking of the reserved granule pool to the plasma membrane. The initial trigger for insulin granule fusion with the plasma membrane is a rise in intracellular calcium and in the case of glucose stimulation results from increased production of ATP, closure of the ATP-sensitive potassium channel and cellular depolarization. In turn, this opens voltage-dependent calcium channels allowing increased influx of extracellular calcium. Calcium is thought to bind to members of the fusion regulatory proteins synaptogamin that functionally repressors the fusion inhibitory protein complexin. Both complexin and synaptogamin interact as well as several other regulatory proteins interact with the core fusion machinery composed of the Q- or t-SNARE proteins syntaxin 1 and SNAP25 in the plasma membrane that assembles with the R- or v-SNARE protein VAMP2 in insulin granules. In this chapter we will review the current progress of insulin granule biogenesis, sorting, trafficking, exocytosis and signaling pathways that comprise the molecular basis of glucose-dependent insulin secretion.

摘要

越来越明显的是,导致胰岛素分泌异常的β细胞功能障碍是患者从糖耐量受损状态发展为明显的2型糖尿病过程中的关键因素(德尔·普拉托,2003年;德尔·普拉托和廷戈,2001年)。尽管已有广泛研究探讨了胰岛素颗粒生物合成、分选和胞吐作用的分子、细胞和生理机制,但控制这些过程的精确机制及其在糖尿病发生过程中的失调仍是一个重要的研究领域。我们现在知道,胰岛素生物合成始于粗面内质网中胰岛素原的合成以及胰岛素原向胰岛素的转化。胰岛素原开始在反式高尔基体网络中进行包装,并被分选到未成熟分泌颗粒中。这些未成熟颗粒通过ATP依赖性质子泵酸化,胰岛素原发生蛋白水解裂解,从而形成胰岛素和C肽。在颗粒成熟过程中,胰岛素与锌和钙以致密核心颗粒的形式结晶,不需要的货物和膜蛋白经历选择性逆行运输,要么进入组成型分泌运输途径,要么进入降解途径。新形成的成熟致密核心胰岛素颗粒分布在两个不同的细胞内池,即可释放池(RRP)和储备池。这两个不同的群体被认为是胰岛素释放双相性的原因,其中RRP颗粒与质膜相关,并经历急性钙依赖性释放,这解释了第一相胰岛素分泌。相比之下,第二相胰岛素分泌需要储备颗粒池运输到质膜。胰岛素颗粒与质膜融合的初始触发因素是细胞内钙的升高,在葡萄糖刺激的情况下,这是由于ATP产生增加、ATP敏感性钾通道关闭和细胞去极化导致的。反过来,这会打开电压依赖性钙通道,使细胞外钙的流入增加。钙被认为与融合调节蛋白突触结合蛋白家族成员结合,这些成员在功能上抑制融合抑制蛋白复合体蛋白。复合体蛋白和突触结合蛋白相互作用,以及其他几种调节蛋白与由质膜中的Q-或t-SNARE蛋白 syntaxin 1和SNAP25组成的核心融合机制相互作用,该机制与胰岛素颗粒中的R-或v-SNARE蛋白VAMP2组装在一起。在本章中,我们将综述胰岛素颗粒生物合成、分选、运输、胞吐作用和信号通路的当前进展,这些构成了葡萄糖依赖性胰岛素分泌的分子基础。

相似文献

1
Insulin granule biogenesis, trafficking and exocytosis.
Vitam Horm. 2009;80:473-506. doi: 10.1016/S0083-6729(08)00616-X.
2
A review on insulin trafficking and exocytosis.
Gene. 2019 Jul 20;706:52-61. doi: 10.1016/j.gene.2019.04.063. Epub 2019 Apr 27.
3
Glucose-stimulated signaling pathways in biphasic insulin secretion.
Diabetes Metab Res Rev. 2002 Nov-Dec;18(6):451-63. doi: 10.1002/dmrr.329.
5
Regulation of secretory granule recruitment and exocytosis at rat neurohypophysial nerve endings.
J Physiol. 1997 Feb 1;498 ( Pt 3)(Pt 3):735-51. doi: 10.1113/jphysiol.1997.sp021898.
9
Lipids implicated in the journey of a secretory granule: from biogenesis to fusion.
J Neurochem. 2016 Jun;137(6):904-12. doi: 10.1111/jnc.13577. Epub 2016 May 2.

引用本文的文献

2
Regulation and function of insulin and insulin-like growth factor receptor signalling.
Nat Rev Mol Cell Biol. 2025 Feb 10. doi: 10.1038/s41580-025-00826-3.
5
6
Diabetes and diabesity in the view of proteomics, drug, and plant-derived remedies.
J Res Med Sci. 2023 Oct 26;28:77. doi: 10.4103/jrms.jrms_487_22. eCollection 2023.
7
Role of cytosolic and endoplasmic reticulum Ca in pancreatic beta-cells: pros and cons.
Pflugers Arch. 2024 Feb;476(2):151-161. doi: 10.1007/s00424-023-02872-2. Epub 2023 Nov 9.
8
Follicle-stimulating hormone orchestrates glucose-stimulated insulin secretion of pancreatic islets.
Nat Commun. 2023 Nov 1;14(1):6991. doi: 10.1038/s41467-023-42801-6.
9
LncRNA MEG3: Targeting the Molecular Mechanisms and Pathogenic causes of Metabolic Diseases.
Curr Med Chem. 2024;31(37):6140-6153. doi: 10.2174/0109298673268051231009075027.
10
Characterization of impaired beta and alpha cell function in response to an oral glucose challenge in cystic fibrosis: a cross-sectional study.
Front Endocrinol (Lausanne). 2023 Aug 31;14:1249876. doi: 10.3389/fendo.2023.1249876. eCollection 2023.

本文引用的文献

1
The RalA GTPase is a central regulator of insulin exocytosis from pancreatic islet beta cells.
J Biol Chem. 2008 Jun 27;283(26):17939-45. doi: 10.1074/jbc.M800321200. Epub 2008 Apr 21.
2
SNAREpin/Munc18 promotes adhesion and fusion of large vesicles to giant membranes.
Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2380-5. doi: 10.1073/pnas.0712125105. Epub 2008 Feb 11.
3
The physiology of glucagon-like peptide 1.
Physiol Rev. 2007 Oct;87(4):1409-39. doi: 10.1152/physrev.00034.2006.
4
Dynamin is functionally coupled to insulin granule exocytosis.
J Biol Chem. 2007 Nov 16;282(46):33530-33536. doi: 10.1074/jbc.M703402200. Epub 2007 Sep 11.
5
Mechanisms of action of glucagon-like peptide 1 in the pancreas.
Pharmacol Ther. 2007 Mar;113(3):546-93. doi: 10.1016/j.pharmthera.2006.11.007. Epub 2006 Dec 28.
6
Selective activation of cognate SNAREpins by Sec1/Munc18 proteins.
Cell. 2007 Jan 12;128(1):183-95. doi: 10.1016/j.cell.2006.12.016.
7
A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis.
Cell. 2006 Sep 22;126(6):1175-87. doi: 10.1016/j.cell.2006.08.030.
8
In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion.
J Cell Sci. 2006 Oct 15;119(Pt 20):4199-206. doi: 10.1242/jcs.03164. Epub 2006 Sep 19.
9
Membrane fusion in cells: molecular machinery and mechanisms.
J Cell Mol Med. 2006 Apr-Jun;10(2):423-7. doi: 10.1111/j.1582-4934.2006.tb00409.x.
10
Compensatory responses to pyruvate carboxylase suppression in islet beta-cells. Preservation of glucose-stimulated insulin secretion.
J Biol Chem. 2006 Aug 4;281(31):22342-22351. doi: 10.1074/jbc.M604350200. Epub 2006 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验