Tran Kenneth, Smith Nicolas P, Loiselle Denis S, Crampin Edmund J
Auckland Bioengineering Institute, University of Auckland, New Zealand.
Biophys J. 2009 Mar 4;96(5):2029-42. doi: 10.1016/j.bpj.2008.11.045.
We present a biophysically based kinetic model of the cardiac SERCA pump that consolidates a range of experimental data into a consistent and thermodynamically constrained framework. The SERCA model consists of a number of sub-states with partial reactions that are sensitive to Ca(2+) and pH, and to the metabolites MgATP, MgADP, and Pi. Optimization of model parameters to fit experimental data favors a fully cooperative Ca(2+)-binding mechanism and predicts a Ca(2+)/H(+) counter-transport stoichiometry of 2. Moreover, the order of binding of the partial reactions, particularly the binding of MgATP, proves to be a strong determinant of the ability of the model to fit the data. A thermodynamic investigation of the model indicates that the binding of MgATP has a large inhibitory effect on the maximal reverse rate of the pump. The model is suitable for integrating into whole-cell models of cardiac electrophysiology and Ca(2+) dynamics to simulate the effects on the cell of compromised metabolism arising in ischemia and hypoxia.
我们提出了一种基于生物物理学的心脏肌浆网Ca²⁺-ATP酶(SERCA)泵动力学模型,该模型将一系列实验数据整合到一个一致且受热力学约束的框架中。SERCA模型由多个具有部分反应的亚状态组成,这些部分反应对Ca²⁺和pH敏感,并且对代谢物MgATP、MgADP和Pi也敏感。通过优化模型参数以拟合实验数据,支持了一种完全协同的Ca²⁺结合机制,并预测Ca²⁺/H⁺反向转运化学计量比为2。此外,部分反应的结合顺序,特别是MgATP的结合顺序,被证明是模型拟合数据能力的一个重要决定因素。对该模型的热力学研究表明,MgATP的结合对泵的最大反向速率有很大的抑制作用。该模型适用于整合到心脏电生理学和Ca²⁺动力学的全细胞模型中,以模拟缺血和缺氧时代谢受损对细胞的影响。