Suppr超能文献

蛋白质组学混合物迭代串联质谱采样的分析后数据采集。

Post analysis data acquisition for the iterative MS/MS sampling of proteomics mixtures.

作者信息

Hoopmann Michael R, Merrihew Gennifer E, von Haller Priska D, MacCoss Michael J

机构信息

University of Washington, Department of Genome Sciences, Seattle, Washington 98195, USA.

出版信息

J Proteome Res. 2009 Apr;8(4):1870-5. doi: 10.1021/pr800828p.

Abstract

The identification of peptides by microcapillary liquid chromatography-tandem mass spectrometry (microLC-MS/MS) has become routine because of the development of fast scanning mass spectrometers, data-dependent acquisition, and database searching algorithms. However, many peptides within the detection limit of the mass spectrometer remain unidentified because of limitations in MS/MS sampling speed despite the dynamic range and peak capacity of the instrument. We have developed an automated approach that uses the mass spectra from high resolution microLC-MS data to define the molecular species present in the mixture and directs the acquisition of MS/MS spectra to precursors that were missed in prior analyses. This approach increases the coverage of the molecular species sampled by MS/MS and consequently the number of peptides and proteins identified during the acquisition of technical or biological replicates using a simple one-dimensional chromatographic separation. The combination of a unique workflow and custom software contribute to the improved identification of molecular features detected in proteomics experiments of complex protein mixtures.

摘要

由于快速扫描质谱仪、数据依赖型采集和数据库搜索算法的发展,通过微毛细管液相色谱-串联质谱法(microLC-MS/MS)鉴定肽段已成为常规操作。然而,尽管质谱仪具有动态范围和峰容量,但由于MS/MS采样速度的限制,许多在质谱仪检测限内的肽段仍未被鉴定出来。我们开发了一种自动化方法,该方法利用高分辨率微LC-MS数据的质谱图来定义混合物中存在的分子种类,并将MS/MS谱图的采集导向先前分析中遗漏的前体。这种方法增加了MS/MS采样的分子种类覆盖率,从而增加了在使用简单一维色谱分离进行技术或生物学重复采集过程中鉴定出的肽段和蛋白质的数量。独特的工作流程和定制软件相结合,有助于改进在复杂蛋白质混合物的蛋白质组学实验中检测到的分子特征的鉴定。

相似文献

1
Post analysis data acquisition for the iterative MS/MS sampling of proteomics mixtures.
J Proteome Res. 2009 Apr;8(4):1870-5. doi: 10.1021/pr800828p.
3
Micro-Data-Independent Acquisition for High-Throughput Proteomics and Sensitive Peptide Mass Spectrum Identification.
Anal Chem. 2018 Aug 7;90(15):8905-8911. doi: 10.1021/acs.analchem.8b01026. Epub 2018 Jul 23.
4
Assessing the dynamic range and peak capacity of nanoflow LC-FAIMS-MS on an ion trap mass spectrometer for proteomics.
Anal Chem. 2008 Sep 15;80(18):6888-97. doi: 10.1021/ac8004988. Epub 2008 Aug 12.
5
Clinical-scale high-throughput human plasma proteome analysis: lung adenocarcinoma.
Proteomics. 2005 Mar;5(4):1150-9. doi: 10.1002/pmic.200401145.
7
An automated proteomic data analysis workflow for mass spectrometry.
BMC Bioinformatics. 2009 Oct 8;10 Suppl 11(Suppl 11):S17. doi: 10.1186/1471-2105-10-S11-S17.
9
pClean: An Algorithm To Preprocess High-Resolution Tandem Mass Spectra for Database Searching.
J Proteome Res. 2019 Sep 6;18(9):3235-3244. doi: 10.1021/acs.jproteome.9b00141. Epub 2019 Aug 14.

引用本文的文献

1
Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry.
ACS Meas Sci Au. 2024 Jun 4;4(4):338-417. doi: 10.1021/acsmeasuresciau.3c00068. eCollection 2024 Aug 21.
2
Identification of Predictive Biomarkers of Lameness in Transition Dairy Cows.
Animals (Basel). 2024 Jul 10;14(14):2030. doi: 10.3390/ani14142030.
5
MS2Planner: improved fragmentation spectra coverage in untargeted mass spectrometry by iterative optimized data acquisition.
Bioinformatics. 2021 Jul 12;37(Suppl_1):i231-i236. doi: 10.1093/bioinformatics/btab279.
6
Eight key rules for successful data-dependent acquisition in mass spectrometry-based metabolomics.
Mass Spectrom Rev. 2023 Jan;42(1):131-143. doi: 10.1002/mas.21715. Epub 2021 Jun 18.
7
Improving Precursor Selectivity in Data-Independent Acquisition Using Overlapping Windows.
J Am Soc Mass Spectrom. 2019 Apr;30(4):669-684. doi: 10.1007/s13361-018-2122-8. Epub 2019 Jan 22.
8
Advanced Precursor Ion Selection Algorithms for Increased Depth of Bottom-Up Proteomic Profiling.
J Proteome Res. 2016 Oct 7;15(10):3563-3573. doi: 10.1021/acs.jproteome.6b00312. Epub 2016 Sep 7.
9
Software Analysis of Uncorrelated MS1 Peaks for Discovery of Post-Translational Modifications.
J Am Soc Mass Spectrom. 2015 Dec;26(12):2133-40. doi: 10.1007/s13361-015-1229-4. Epub 2015 Aug 12.
10
Improved False Discovery Rate Estimation Procedure for Shotgun Proteomics.
J Proteome Res. 2015 Aug 7;14(8):3148-61. doi: 10.1021/acs.jproteome.5b00081. Epub 2015 Jul 27.

本文引用的文献

1
An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database.
J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89. doi: 10.1016/1044-0305(94)80016-2.
2
Data-controlled automation of liquid chromatography/tandem mass spectrometry analysis of peptide mixtures.
J Am Soc Mass Spectrom. 1996 Jun;7(6):532-40. doi: 10.1016/1044-0305(96)00057-8.
3
Precursor-ion mass re-estimation improves peptide identification on hybrid instruments.
J Proteome Res. 2008 Sep;7(9):4031-9. doi: 10.1021/pr800307m. Epub 2008 Aug 16.
4
Proteomics reveals novel Drosophila seminal fluid proteins transferred at mating.
PLoS Biol. 2008 Jul 29;6(7):e178. doi: 10.1371/journal.pbio.0060178.
5
Evaluation of three principally different intact protein prefractionation methods for plasma biomarker discovery.
J Proteome Res. 2008 Jul;7(7):2712-22. doi: 10.1021/pr700821k. Epub 2008 Jun 13.
6
An integrated, directed mass spectrometric approach for in-depth characterization of complex peptide mixtures.
Mol Cell Proteomics. 2008 Nov;7(11):2138-50. doi: 10.1074/mcp.M700498-MCP200. Epub 2008 May 29.
8
Isoform analysis of LC-MS/MS data from multidimensional fractionation of the serum proteome.
J Proteome Res. 2008 Jun;7(6):2546-52. doi: 10.1021/pr7007219. Epub 2008 Apr 18.
9
On the benefits of acquiring peptide fragment ions at high measured mass accuracy.
J Am Soc Mass Spectrom. 2008 Jun;19(6):891-901. doi: 10.1016/j.jasms.2008.02.005. Epub 2008 Mar 4.
10
Open-source platform for the analysis of liquid chromatography-mass spectrometry (LC-MS) data.
Methods Mol Biol. 2008;428:369-82. doi: 10.1007/978-1-59745-117-8_19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验