Suppr超能文献

串珠模型理想化地捕捉了半柔性细丝动力学。

Rods-on-string idealization captures semiflexible filament dynamics.

作者信息

Chandran Preethi L, Mofrad Mohammad R K

机构信息

Molecular Cell Biomechanics Laboratory, Department of Bioengineering, University of California, Berkeley, California 94720, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jan;79(1 Pt 1):011906. doi: 10.1103/PhysRevE.79.011906. Epub 2009 Jan 13.

Abstract

We present an approach to modeling the two-dimensional Brownian dynamics of semiflexible filaments in the worm-model description as uniform, isotropic, and continuously flexible. Experimental observations increasingly show that the mechanical behavior of semiflexible filament networks departs from conventional knowledge. A force-balance-based dynamic simulation of the filament networks has multiple advantages as an approach to understanding their anomalous mechanics. However, a major disadvantage is the difficulty of capturing filament hydrodynamics and bending mechanics in a computationally efficient and physically consistent manner. To that end, we propose a strategy for modeling semiflexible filaments which involves idealizing a semiflexible filament as a contiguous string of flexible rods, and considering the Brownian forces on it as Einsteinian-like point normal and tangential forces. By idealizing the filament as a string of rods, we avoid the complex hydrodynamic treatment involved in beads-on-string idealizations, and implement large-deflection beam mechanics and filament inextensibility in a natural manner, while reducing the computational size of the problem. By considering the Brownian forces as point normal and tangential forces, we decompose the Brownian forces on straight and curved segments into a combination of classical resultant forces and couples whose distribution is shown to be governed by the rod diffusion coefficients. The decomposition allows solution of the Euler beam equations to second-order continuity between segments and fifth-order continuity within segments. We show that the approach is physically consistent by capturing multiple Brownian phenomena ranging from the rigid to the semiflexible limit: the translational and rotational diffusion of rigid rods; the thermal fluctuation of semirigid cantilever filaments; and the shape, bending, and time relaxation of freely diffusing, semiflexible actin filaments.

摘要

我们提出了一种在蠕虫模型描述中对半柔性细丝的二维布朗动力学进行建模的方法,该细丝被视为均匀、各向同性且连续柔性的。实验观察越来越表明,半柔性细丝网络的力学行为与传统认知不同。基于力平衡的细丝网络动态模拟作为一种理解其异常力学的方法具有多个优点。然而,一个主要缺点是以计算高效且物理上一致的方式捕捉细丝流体动力学和弯曲力学存在困难。为此,我们提出了一种对半柔性细丝进行建模的策略,该策略包括将半柔性细丝理想化为一串连续的柔性杆,并将其上的布朗力视为类似爱因斯坦的点法向力和切向力。通过将细丝理想化为一串杆,我们避免了串珠理想化中涉及的复杂流体动力学处理,并以自然的方式实现了大挠度梁力学和细丝不可伸长性,同时减小了问题的计算规模。通过将布朗力视为点法向力和切向力,我们将直线段和曲线段上的布朗力分解为经典合力和力偶的组合,其分布显示受杆扩散系数控制。这种分解允许求解欧拉梁方程,以实现段间的二阶连续性和段内的五阶连续性。我们表明,该方法通过捕捉从刚性到半柔性极限的多种布朗现象在物理上是一致的:刚性杆的平动和转动扩散;半刚性悬臂细丝的热涨落;以及自由扩散的半柔性肌动蛋白细丝的形状、弯曲和时间弛豫。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验