Suppr超能文献

使用集成学习独立成分分析对微型正电子发射断层扫描仪血液输入函数进行部分容积校正。

Partial volume correction of the microPET blood input function using ensemble learning independent component analysis.

作者信息

Su Kuan-Hao, Lee Jih-Shian, Li Jia-Hung, Yang Yu-Wen, Liu Ren-Shian, Chen Jyh-Cheng

机构信息

Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taiwan, Republic of China.

出版信息

Phys Med Biol. 2009 Mar 21;54(6):1823-46. doi: 10.1088/0031-9155/54/6/026. Epub 2009 Mar 3.

Abstract

Medical images usually suffer from a partial volume effect (PVE), which may degrade the accuracy of any quantitative information extracted from the images. Our aim was to recreate accurate radioactivity concentration and time-activity curves (TACs) by microPET R4 quantification using ensemble learning independent component analysis (EL-ICA). We designed a digital cardiac phantom for this simulation and in order to evaluate the ability of EL-ICA to correct the PVE, the simulated images were convoluted using a Gaussian function (FWHM = 1-4 mm). The robustness of the proposed method towards noise was investigated by adding statistical noise (SNR = 2-16). During further evaluation, another set of cardiac phantoms were generated from the reconstructed images, and Poisson noise at different levels was added to the sinogram. In real experiments, four rat microPET images and a number of arterial blood samples were obtained; these were used to estimate the metabolic rate of FDG (MR(FDG)). Input functions estimated using the FastICA method were used for comparison. The results showed that EL-ICA could correct PVE in both the simulated and real cases. After correcting for the PVE, the errors for MR(FDG), when estimated by the EL-ICA method, were smaller than those when TACs were directly derived from the PET images and when the FastICA approach was used.

摘要

医学图像通常会受到部分容积效应(PVE)的影响,这可能会降低从图像中提取的任何定量信息的准确性。我们的目标是通过使用集成学习独立成分分析(EL-ICA)的微型正电子发射断层扫描仪(microPET)R4定量来重建准确的放射性浓度和时间-活度曲线(TAC)。我们为此模拟设计了一个数字心脏模型,为了评估EL-ICA校正PVE的能力,使用高斯函数(半高宽 = 1-4毫米)对模拟图像进行卷积。通过添加统计噪声(信噪比 = 2-16)研究了所提出方法对噪声的鲁棒性。在进一步评估期间,从重建图像生成另一组心脏模型,并向正弦图添加不同水平的泊松噪声。在实际实验中,获得了四张大鼠微型正电子发射断层扫描图像和一些动脉血样;这些用于估计氟代脱氧葡萄糖(FDG)的代谢率(MR(FDG))。使用快速独立成分分析(FastICA)方法估计的输入函数用于比较。结果表明,EL-ICA可以在模拟和实际情况下校正PVE。校正PVE后,通过EL-ICA方法估计时,MR(FDG)的误差小于直接从PET图像导出TAC以及使用FastICA方法时的误差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验