Tanser Frank, Bärnighausen Till, Cooke Graham S, Newell Marie-Louise
Africa Centre for Health and Population Studies, University of KwaZulu-Natal, Mtubatuba, South Africa.
Int J Epidemiol. 2009 Aug;38(4):1008-16. doi: 10.1093/ije/dyp148. Epub 2009 Mar 4.
South Africa contains more than one in seven of the world's HIV-positive population. Knowledge of local variation in levels of HIV infection is important for prioritization of areas for intervention. We apply two spatial analytical techniques to investigate the micro-geographical patterns and clustering of HIV infections in a high prevalence, rural population in KwaZulu-Natal, South Africa.
All 12,221 participants who consented to an HIV test in a population under continuous demographical surveillance were linked to their homesteads and geo-located in a geographical information system (accuracy of <2 m). We then used a two-dimensional Gaussian kernel of radius 3 km to produce robust estimates of HIV prevalence that vary across continuous geographical space. We also applied a Kulldorff spatial scan statistic (Bernoulli model) to formally identify clusters of infections (P < 0.05).
The results reveal considerable geographical variation in local HIV prevalence (range = 6-36%) within this relatively homogenous population and provide clear empirical evidence for the localized clustering of HIV infections. Three high-risk, overlapping spatial clusters [Relative Risk (RR) = 1.34-1.62] were identified by the Kulldorff statistic along the National Road (P < or = 0.01), whereas three low risk clusters (RR = 0.2-0.38) were identified elsewhere in the study area (P < or = 0.017).
The findings show the existence of several localized HIV epidemics of varying intensity that are partly contained within geographically defined communities. Despite the overall high prevalence of HIV in many rural South African settings, the results support the need for interventions that target socio-geographic spaces (communities) at greatest risk to supplement measures aimed at the general population.
全球每七名艾滋病毒呈阳性的人口中,就有超过一名来自南非。了解艾滋病毒感染水平的局部差异对于确定干预重点地区至关重要。我们应用两种空间分析技术,调查南非夸祖鲁 - 纳塔尔省一个高流行率农村地区艾滋病毒感染的微观地理模式和聚集情况。
在持续人口统计学监测下,所有12221名同意进行艾滋病毒检测的参与者都与他们的家园相关联,并在地理信息系统中进行地理定位(精度<2米)。然后,我们使用半径为3公里的二维高斯核来生成在连续地理空间中变化的艾滋病毒流行率的稳健估计值。我们还应用了Kulldorff空间扫描统计量(伯努利模型)来正式识别感染聚集区(P<0.05)。
结果显示,在这个相对同质的人群中,当地艾滋病毒流行率存在相当大的地理差异(范围 = 6 - 36%),并为艾滋病毒感染的局部聚集提供了明确的经验证据。Kulldorff统计量沿着国道确定了三个高风险、重叠的空间聚集区[相对风险(RR)= 1.34 - 1.62](P≤0.01),而在研究区域的其他地方确定了三个低风险聚集区(RR = 0.2 - 0.38)(P≤0.017)。
研究结果表明存在几种强度不同的局部艾滋病毒流行,部分流行局限于地理上界定的社区内。尽管在南非许多农村地区艾滋病毒总体流行率很高,但结果支持需要针对风险最大的社会地理空间(社区)进行干预,以补充针对普通人群的措施。