Pathmanathan Pras, Whiteley Jonathan P
Computing Laboratory, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK.
Ann Biomed Eng. 2009 May;37(5):860-73. doi: 10.1007/s10439-009-9663-8. Epub 2009 Mar 5.
Much effort has been devoted to developing numerical techniques for solving the equations that describe cardiac electrophysiology, namely the monodomain equations and bidomain equations. Only a limited selection of publications, however, address the development of numerical techniques for mechanoelectric simulations where cardiac electrophysiology is coupled with deformation of cardiac tissue. One problem commonly encountered in mechanoelectric simulations is instability of the coupled numerical scheme. In this study, we develop a stable numerical scheme for mechanoelectric simulations. A number of convergence tests are carried out using this stable technique for simulations where deformations are of the magnitude typically observed in a beating heart. These convergence tests demonstrate that accurate computation of tissue deformation requires a nodal spacing of around 1 mm in the mesh used to calculate tissue deformation. This is a much finer computational grid than has previously been acknowledged, and has implications for the computational efficiency of the resulting numerical scheme.
人们投入了大量精力来开发用于求解描述心脏电生理学的方程(即单域方程和双域方程)的数值技术。然而,只有有限的一些出版物涉及机电模拟的数值技术开发,其中心脏电生理学与心脏组织的变形相耦合。机电模拟中常见的一个问题是耦合数值格式的不稳定性。在本研究中,我们开发了一种用于机电模拟的稳定数值格式。使用这种稳定技术对变形幅度通常在跳动心脏中观察到的模拟进行了多次收敛性测试。这些收敛性测试表明,要准确计算组织变形,用于计算组织变形的网格中的节点间距需要约1毫米。这是一个比以前公认的要精细得多的计算网格,并且对所得数值格式的计算效率有影响。