Suppr超能文献

人类活动对媒介传播疾病持续性的影响。

The effects of human movement on the persistence of vector-borne diseases.

作者信息

Cosner C, Beier J C, Cantrell R S, Impoinvil D, Kapitanski L, Potts M D, Troyo A, Ruan S

机构信息

Department of Mathematics, University of Miami, Coral Gables, FL 33124, USA.

出版信息

J Theor Biol. 2009 Jun 21;258(4):550-60. doi: 10.1016/j.jtbi.2009.02.016. Epub 2009 Mar 3.

Abstract

With the recent resurgence of vector-borne diseases due to urbanization and development there is an urgent need to understand the dynamics of vector-borne diseases in rapidly changing urban environments. For example, many empirical studies have produced the disturbing finding that diseases continue to persist in modern city centers with zero or low rates of transmission. We develop spatial models of vector-borne disease dynamics on a network of patches to examine how the movement of humans in heterogeneous environments affects transmission. We show that the movement of humans between patches is sufficient to maintain disease persistence in patches with zero transmission. We construct two classes of models using different approaches: (i) Lagrangian models that mimic human commuting behavior and (ii) Eulerian models that mimic human migration. We determine the basic reproduction number R(0) for both modeling approaches. We show that for both approaches that if the disease-free equilibrium is stable (R(0)<1) then it is globally stable and if the disease-free equilibrium is unstable (R(0)>1) then there exists a unique positive (endemic) equilibrium that is globally stable among positive solutions. Finally, we prove in general that Lagrangian and Eulerian modeling approaches are not equivalent. The modeling approaches presented provide a framework to explore spatial vector-borne disease dynamics and control in heterogeneous environments. As an example, we consider two patches in which the disease dies out in both patches when there is no movement between them. Numerical simulations demonstrate that the disease becomes endemic in both patches when humans move between the two patches.

摘要

随着城市化和发展导致媒介传播疾病近期再度出现,迫切需要了解在快速变化的城市环境中媒介传播疾病的动态。例如,许多实证研究得出了令人不安的发现,即疾病在现代城市中心持续存在,传播率为零或很低。我们在斑块网络上建立媒介传播疾病动态的空间模型,以研究异质环境中人类的流动如何影响传播。我们表明,斑块之间的人类流动足以在传播率为零的斑块中维持疾病的持续存在。我们使用不同方法构建两类模型:(i)模拟人类通勤行为的拉格朗日模型和(ii)模拟人类迁移的欧拉模型。我们为这两种建模方法确定基本再生数(R(0))。我们表明,对于这两种方法,如果无病平衡点是稳定的((R(0)<1)),那么它是全局稳定的;如果无病平衡点是不稳定的((R(0)>1)),那么存在唯一的正(地方病)平衡点,在正解中是全局稳定的。最后,我们一般证明拉格朗日和欧拉建模方法不等价。所提出的建模方法提供了一个框架,用于探索异质环境中空间媒介传播疾病的动态和控制。例如,我们考虑两个斑块,当它们之间没有流动时,疾病在两个斑块中都消失。数值模拟表明,当人类在两个斑块之间移动时,疾病在两个斑块中都成为地方病。

相似文献

1
The effects of human movement on the persistence of vector-borne diseases.
J Theor Biol. 2009 Jun 21;258(4):550-60. doi: 10.1016/j.jtbi.2009.02.016. Epub 2009 Mar 3.
2
A hybrid Lagrangian-Eulerian model for vector-borne diseases.
J Math Biol. 2024 Jun 18;89(2):16. doi: 10.1007/s00285-024-02109-5.
4
Vector-borne disease models with Lagrangian approach.
J Math Biol. 2024 Jan 31;88(2):22. doi: 10.1007/s00285-023-02044-x.
5
An age-structured vector-borne disease model with horizontal transmission in the host.
Math Biosci Eng. 2018 Oct 1;15(5):1099-1116. doi: 10.3934/mbe.2018049.
6
Transmission Dynamics and Control Mechanisms of Vector-Borne Diseases with Active and Passive Movements Between Urban and Satellite Cities.
Bull Math Biol. 2019 Nov;81(11):4518-4563. doi: 10.1007/s11538-019-00671-4. Epub 2019 Nov 18.
7
The control of vector-borne disease epidemics.
J Theor Biol. 2008 Nov 7;255(1):16-25. doi: 10.1016/j.jtbi.2008.07.033. Epub 2008 Jul 30.
8
Vector-borne diseases models with residence times - A Lagrangian perspective.
Math Biosci. 2016 Nov;281:128-138. doi: 10.1016/j.mbs.2016.09.006. Epub 2016 Sep 10.
9
Modeling Impact of Temperature and Human Movement on the Persistence of Dengue Disease.
Comput Math Methods Med. 2017;2017:1747134. doi: 10.1155/2017/1747134. Epub 2017 Sep 19.
10
Human movement, cooperation and the effectiveness of coordinated vector control strategies.
J R Soc Interface. 2017 Aug;14(133). doi: 10.1098/rsif.2017.0336.

引用本文的文献

1
Effect of host movement on the prevalence of vector-borne diseases.
J Math Biol. 2025 Sep 5;91(3):33. doi: 10.1007/s00285-025-02254-5.
3
The effects of variable spatial aggregation on lymphatic filariasis transmission.
Parasit Vectors. 2025 Jan 9;18(1):3. doi: 10.1186/s13071-024-06582-1.
4
Zoonosis: social and environmental connections in the Mexico-United States border region.
One Health Outlook. 2025 Jan 9;7(1):3. doi: 10.1186/s42522-024-00120-w.
5
Factors associated with contracting border malaria: A systematic and meta-analysis.
PLoS One. 2025 Jan 3;20(1):e0310063. doi: 10.1371/journal.pone.0310063. eCollection 2025.
6
High-resolution spatio-temporal risk mapping for malaria in Namibia: a comprehensive analysis.
Malar J. 2024 Oct 5;23(1):297. doi: 10.1186/s12936-024-05103-w.
7
A hybrid Lagrangian-Eulerian model for vector-borne diseases.
J Math Biol. 2024 Jun 18;89(2):16. doi: 10.1007/s00285-024-02109-5.
8
Global Change and Emerging Infectious Diseases.
Annu Rev Resour Economics. 2022 Oct;14:333-354. doi: 10.1146/annurev-resource-111820-024214. Epub 2022 Apr 1.
9
Vector-borne disease models with Lagrangian approach.
J Math Biol. 2024 Jan 31;88(2):22. doi: 10.1007/s00285-023-02044-x.
10
A two-phase fluid model for epidemic flow.
Infect Dis Model. 2023 Jul 13;8(3):920-938. doi: 10.1016/j.idm.2023.07.001. eCollection 2023 Sep.

本文引用的文献

1
A sharp threshold for disease persistence in host metapopulations.
J Biol Dyn. 2007 Oct;1(4):363-78. doi: 10.1080/17513750701605465.
2
The ideal free distribution as an evolutionarily stable strategy.
J Biol Dyn. 2007 Jul;1(3):249-71. doi: 10.1080/17513750701450227.
3
The effect of global travel on the spread of sars.
Math Biosci Eng. 2006 Jan;3(1):205-18. doi: 10.3934/mbe.2006.3.205.
4
Modeling spatial spread of west nile virus and impact of directional dispersal of birds.
Math Biosci Eng. 2006 Jan;3(1):145-60. doi: 10.3934/mbe.2006.3.145.
5
The Ross-Macdonald model in a patchy environment.
Math Biosci. 2008 Dec;216(2):123-31. doi: 10.1016/j.mbs.2008.08.010. Epub 2008 Sep 3.
6
Impact of travel between patches for spatial spread of disease.
Bull Math Biol. 2007 May;69(4):1355-75. doi: 10.1007/s11538-006-9169-6. Epub 2007 Feb 21.
7
9
A multi-species epidemic model with spatial dynamics.
Math Med Biol. 2005 Jun;22(2):129-42. doi: 10.1093/imammb/dqi003. Epub 2005 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验