Suppr超能文献

一种用于疫情传播的两相流体模型。

A two-phase fluid model for epidemic flow.

作者信息

Cheng Ziqiang, Wang Jin

机构信息

School of Mathematics, Hefei University of Technology, Hefei, Anhui, 230009, China.

Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, USA.

出版信息

Infect Dis Model. 2023 Jul 13;8(3):920-938. doi: 10.1016/j.idm.2023.07.001. eCollection 2023 Sep.

Abstract

We propose a new mathematical and computational modeling framework that incorporates fluid dynamics to study the spatial spread of infectious diseases. We model the susceptible and infected populations as two inviscid fluids which interact with each other. Their motion at the macroscopic level characterizes the progression and spread of the epidemic. To implement the two-phase flow model, we employ high-order numerical methods from computational fluid dynamics. We apply this model to simulate the COVID-19 outbreaks in the city of Wuhan in China and the state of Tennessee in the US. Our modeling and simulation framework allows us to conduct a detailed investigation into the complex spatiotemporal dynamics related to the transmission and spread of COVID-19.

摘要

我们提出了一个新的数学和计算建模框架,该框架纳入流体动力学以研究传染病的空间传播。我们将易感人群和感染人群建模为两种相互作用的无粘性流体。它们在宏观层面的运动表征了疫情的发展和传播。为了实现两相流模型,我们采用计算流体动力学中的高阶数值方法。我们应用此模型来模拟中国武汉市和美国田纳西州的新冠疫情爆发。我们的建模和模拟框架使我们能够对与新冠病毒传播和扩散相关的复杂时空动态进行详细研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/356d/10403727/edb3149a10e5/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验