Suppr超能文献

基于配体的蛋白质结构域模型在预测新型分子靶点中的应用及对亲和色谱数据的分类应用。

Use of ligand based models for protein domains to predict novel molecular targets and applications to triage affinity chromatography data.

作者信息

Bender Andreas, Mikhailov Dmitri, Glick Meir, Scheiber Josef, Davies John W, Cleaver Stephen, Marshall Stephen, Tallarico John A, Harrington Edmund, Cornella-Taracido Ivan, Jenkins Jeremy L

机构信息

Center for Proteomic Chemistry, Lead Discovery Informatics, Developmental and Molecular Pathways, and Global Discovery Chemistry, Chemogenetics and Proteomics, Novartis Institutes for BioMedical Research, Inc., Cambridge, Massachusetts 02139, USA.

出版信息

J Proteome Res. 2009 May;8(5):2575-85. doi: 10.1021/pr900107z.

Abstract

The elucidation of drug targets is important both to optimize desired compound action and to understand drug side-effects. In this study, we created statistical models which link chemical substructures of ligands to protein domains in a probabilistic manner and employ the model to triage the results of affinity chromatography experiments. By annotating targets with their InterPro domains, general rules of ligand-protein domain associations were derived and successfully employed to predict protein targets outside the scope of the training set. This methodology was then tested on a proteomics affinity chromatography data set containing 699 compounds. The domain prediction model correctly detected 31.6% of the experimental targets at a specificity of 46.8%. This is striking since 86% of the predicted targets are not part of them (but share InterPro domains with them), and thus could not have been predicted by conventional target prediction approaches. Target predictions improve drastically when significance (FDR) scores for target pulldowns are employed, emphasizing their importance for eliminating artifacts. Filament proteins (such as actin and tubulin) are detected to be 'frequent hitters' in proteomics experiments and their presence in pulldowns is not supported by the target predictions. On the other hand, membrane-bound receptors such as serotonin and dopamine receptors are noticeably absent in the affinity chromatography sets, although their presence would be expected from the predicted targets of compounds. While this can partly be explained by the experimental setup, we suggest the computational methods employed here as a complementary step of identifying protein targets of small molecules. Affinity chromatography results for gefitinib are discussed in detail and while two out of the three kinases with the highest affinity to gefitinib in biochemical assays are detected by affinity chromatography, also the possible involvement of NSF as a target for modulating cancer progressions via beta-arrestin can be proposed by this method.

摘要

阐明药物靶点对于优化所需化合物的作用以及理解药物副作用都很重要。在本研究中,我们创建了统计模型,该模型以概率方式将配体的化学亚结构与蛋白质结构域联系起来,并使用该模型对亲和色谱实验结果进行分类。通过用InterPro结构域注释靶点,得出了配体 - 蛋白质结构域关联的一般规则,并成功用于预测训练集范围之外的蛋白质靶点。然后在包含699种化合物的蛋白质组学亲和色谱数据集上对该方法进行了测试。结构域预测模型在特异性为46.8%的情况下正确检测出31.6%的实验靶点。这很显著,因为86%的预测靶点不属于这些靶点(但与它们共享InterPro结构域),因此传统的靶点预测方法无法预测到这些靶点。当采用靶点下拉的显著性(FDR)分数时,靶点预测有了显著改善,强调了它们对于消除假象的重要性。丝状蛋白(如肌动蛋白和微管蛋白)在蛋白质组学实验中被检测为“频繁命中靶点”,但靶点预测不支持它们在下拉实验中的存在。另一方面,亲和色谱组中明显没有膜结合受体,如血清素和多巴胺受体,尽管从化合物的预测靶点来看它们应该存在。虽然这部分可以通过实验设置来解释,但我们建议将这里采用的计算方法作为识别小分子蛋白质靶点的补充步骤。详细讨论了吉非替尼的亲和色谱结果,虽然在生化分析中对吉非替尼亲和力最高的三种激酶中有两种通过亲和色谱检测到,但该方法也可以提出NSF作为通过β - 抑制蛋白调节癌症进展的靶点的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验