Suppr超能文献

蛋白质化学计量学建模与计算机辅助靶点预测相结合:一种同时预测小分子多药理学和结合亲和力/活性的综合方法。

Proteochemometric modelling coupled to in silico target prediction: an integrated approach for the simultaneous prediction of polypharmacology and binding affinity/potency of small molecules.

作者信息

Paricharak Shardul, Cortés-Ciriano Isidro, IJzerman Adriaan P, Malliavin Thérèse E, Bender Andreas

机构信息

Department of Chemistry, Centre for Molecular Science Informatics, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK.

Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, , 2300 RA Leiden, The Netherlands.

出版信息

J Cheminform. 2015 Apr 15;7:15. doi: 10.1186/s13321-015-0063-9. eCollection 2015.

Abstract

The rampant increase of public bioactivity databases has fostered the development of computational chemogenomics methodologies to evaluate potential ligand-target interactions (polypharmacology) both in a qualitative and quantitative way. Bayesian target prediction algorithms predict the probability of an interaction between a compound and a panel of targets, thus assessing compound polypharmacology qualitatively, whereas structure-activity relationship techniques are able to provide quantitative bioactivity predictions. We propose an integrated drug discovery pipeline combining in silico target prediction and proteochemometric modelling (PCM) for the respective prediction of compound polypharmacology and potency/affinity. The proposed pipeline was evaluated on the retrospective discovery of Plasmodium falciparum DHFR inhibitors. The qualitative in silico target prediction model comprised 553,084 ligand-target associations (a total of 262,174 compounds), covering 3,481 protein targets and used protein domain annotations to extrapolate predictions across species. The prediction of bioactivities for plasmodial DHFR led to a recall value of 79% and a precision of 100%, where the latter high value arises from the structural similarity of plasmodial DHFR inhibitors and T. gondii DHFR inhibitors in the training set. Quantitative PCM models were then trained on a dataset comprising 20 eukaryotic, protozoan and bacterial DHFR sequences, and 1,505 distinct compounds (in total 3,099 data points). The most predictive PCM model exhibited R (2) 0 test and RMSEtest values of 0.79 and 0.59 pIC50 units respectively, which was shown to outperform models based exclusively on compound (R (2) 0 test/RMSEtest = 0.63/0.78) and target information (R (2) 0 test/RMSEtest = 0.09/1.22), as well as inductive transfer knowledge between targets, with respective R (2) 0 test and RMSEtest values of 0.76 and 0.63 pIC50 units. Finally, both methods were integrated to predict the protein targets and the potency on plasmodial DHFR for the GSK TCAMS dataset, which comprises 13,533 compounds displaying strong anti-malarial activity. 534 of those compounds were identified as DHFR inhibitors by the target prediction algorithm, while the PCM algorithm identified 25 compounds, and 23 compounds (predicted pIC50 > 7) were identified by both methods. Overall, this integrated approach simultaneously provides target and potency/affinity predictions for small molecules. Graphical abstractProteochemometric modelling coupled to in silico target prediction.

摘要

公共生物活性数据库的迅猛增长推动了计算化学基因组学方法的发展,以便从定性和定量两个方面评估潜在的配体-靶点相互作用(多药理学)。贝叶斯靶点预测算法预测化合物与一组靶点之间相互作用的概率,从而定性评估化合物的多药理学,而构效关系技术则能够提供定量的生物活性预测。我们提出了一种集成的药物发现流程,将计算机辅助靶点预测和蛋白质化学计量学建模(PCM)相结合,分别用于预测化合物的多药理学和效力/亲和力。所提出的流程在恶性疟原虫二氢叶酸还原酶(DHFR)抑制剂的回顾性发现中进行了评估。定性的计算机辅助靶点预测模型包含553,084个配体-靶点关联(总共262,174种化合物),涵盖3,481个蛋白质靶点,并使用蛋白质结构域注释来推断跨物种的预测。疟原虫DHFR生物活性的预测召回率为79%,精度为100%,后者的高值源于训练集中疟原虫DHFR抑制剂与弓形虫DHFR抑制剂的结构相似性。然后,在一个包含20个真核、原生动物和细菌DHFR序列以及1,505种不同化合物(总共3,099个数据点)的数据集上训练定量PCM模型。预测性最强的PCM模型的R(2) 0测试值和RMSEtest值分别为0.79和0.59 pIC50单位,结果表明其性能优于仅基于化合物(R(2) 0测试/RMSEtest = 0.63/0.78)和靶点信息(R(2) 0测试/RMSEtest = 0.09/1.22)的模型,以及靶点之间的归纳转移知识,其R(2) 0测试值和RMSEtest值分别为0.76和0.63 pIC50单位。最后,将这两种方法集成起来,以预测葛兰素史克TCAMS数据集中疟原虫DHFR的蛋白质靶点和效力,该数据集包含13,533种显示出强抗疟活性的化合物。通过靶点预测算法,其中534种化合物被鉴定为DHFR抑制剂,而PCM算法鉴定出25种化合物,两种方法共同鉴定出23种化合物(预测pIC50 > 7)。总体而言,这种集成方法同时为小分子提供靶点和效力/亲和力预测。图形摘要蛋白质化学计量学建模与计算机辅助靶点预测相结合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/defb/4413554/af6d09ea4462/13321_2015_63_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验