Santos Veronica J, Bustamante Carlos D, Valero-Cuevas Francisco J
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA.
IEEE Trans Biomed Eng. 2009 Mar;56(3):552-64. doi: 10.1109/TBME.2008.2006033. Epub 2008 Oct 7.
The field of complex biomechanical modeling has begun to rely on Monte Carlo techniques to investigate the effects of parameter variability and measurement uncertainty on model outputs, search for optimal parameter combinations, and define model limitations. However, advanced stochastic methods to perform data-driven explorations, such as Markov chain Monte Carlo (MCMC), become necessary as the number of model parameters increases. Here, we demonstrate the feasibility and, what to our knowledge is, the first use of an MCMC approach to improve the fitness of realistically large biomechanical models. We used a Metropolis-Hastings algorithm to search increasingly complex parameter landscapes (3, 8, 24, and 36 dimensions) to uncover underlying distributions of anatomical parameters of a "truth model" of the human thumb on the basis of simulated kinematic data (thumbnail location, orientation, and linear and angular velocities) polluted by zero-mean, uncorrelated multivariate Gaussian "measurement noise." Driven by these data, ten Markov chains searched each model parameter space for the subspace that best fit the data (posterior distribution). As expected, the convergence time increased, more local minima were found, and marginal distributions broadened as the parameter space complexity increased. In the 36-D scenario, some chains found local minima but the majority of chains converged to the true posterior distribution (confirmed using a cross-validation dataset), thus demonstrating the feasibility and utility of these methods for realistically large biomechanical problems.
复杂生物力学建模领域已开始依靠蒙特卡罗技术来研究参数变异性和测量不确定性对模型输出的影响,寻找最优参数组合,并界定模型的局限性。然而,随着模型参数数量的增加,执行数据驱动探索的先进随机方法(如马尔可夫链蒙特卡罗法(MCMC))变得必不可少。在此,我们证明了使用MCMC方法来提高实际大型生物力学模型拟合度的可行性,据我们所知,这还是首次使用该方法。我们使用了一种梅特罗波利斯-黑斯廷斯算法来搜索日益复杂的参数空间(3维、8维、24维和36维),以便在受到零均值、不相关多变量高斯“测量噪声”污染的模拟运动学数据(拇指指甲位置、方向以及线性和角速度)的基础上,揭示人类拇指“真值模型”解剖学参数的潜在分布。在这些数据的驱动下,十条马尔可夫链在每个模型参数空间中搜索最适合数据的子空间(后验分布)。不出所料,随着参数空间复杂度的增加,收敛时间延长,发现的局部最小值增多,边际分布变宽。在36维的情况下,一些链找到了局部最小值,但大多数链收敛到了真实的后验分布(使用交叉验证数据集确认),从而证明了这些方法对于实际大型生物力学问题的可行性和实用性。