Suppr超能文献

使用随机森林检测和分类乳房X光片中的线性结构。

Detecting and classifying linear structures in mammograms using random forests.

作者信息

Berks Michael, Chen Zezhi, Astley Sue, Taylor Chris

机构信息

Imaging Science and Biomedical Engineering, School of Cancer and Enabling Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.

出版信息

Inf Process Med Imaging. 2011;22:510-24. doi: 10.1007/978-3-642-22092-0_42.

Abstract

Detecting and classifying curvilinear structure is important in many image interpretation tasks. We focus on the challenging problem of detecting such structure in mammograms and deciding whether it is normal or abnormal. We adopt a discriminative learning approach based on a Dual-Tree Complex Wavelet representation and random forest classification. We present results of a quantitative comparison of our approach with three leading methods from the literature and with learning-based variants of those methods. We show that our new approach gives significantly better results than any of the other methods, achieving an area under the ROC curve A(z) = 0.923 for curvilinear structure detection, and A(z) = 0.761 for distinguishing between normal and abnormal structure (spicules). A detailed analysis suggests that some of the improvement is due to discriminative learning, and some due to the DT-CWT representation, which provides local phase information and good angular resolution.

摘要

在许多图像解释任务中,检测和分类曲线结构都很重要。我们专注于在乳腺X光片中检测此类结构并判断其是正常还是异常这一具有挑战性的问题。我们采用基于双树复数小波表示和随机森林分类的判别式学习方法。我们给出了将我们的方法与文献中的三种领先方法以及这些方法基于学习的变体进行定量比较的结果。我们表明,我们的新方法比其他任何方法都能给出显著更好的结果,在曲线结构检测方面,ROC曲线下面积A(z)=0.923,在区分正常和异常结构(毛刺)方面,A(z)=0.761。详细分析表明,部分改进归功于判别式学习,部分归功于双树复数小波变换(DT-CWT)表示,它提供局部相位信息和良好的角分辨率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验