Suppr超能文献

从 micro-CT 图像中获得的微血管测量的准确性。

Accuracy of microvascular measurements obtained from micro-CT images.

机构信息

Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.

出版信息

Ann Biomed Eng. 2010 Sep;38(9):2851-64. doi: 10.1007/s10439-010-0058-7. Epub 2010 May 11.

Abstract

Early changes in branching geometry of microvasculature and its associated impact on the perfusion distribution in diseases, especially those in which different branching generations are affected differently, require the ability to analyze intact vascular trees over a wide range of scales. Micro-CT offers an excellent framework to analyze the microvascular branching geometry. Such an analysis requires methods to be developed that can accurately characterize branching properties, such as branch diameter, length, branching angle, and branch interconnectivity of the microvasculature. The purpose of this article is to report the results of a study of two human intramyocardial coronary vascular tree casts in which the accuracy of micro-CT vascular imaging and its analysis are tested against measurements made through an optical microscope (used as the "gold-standard"). Methods related to image segmentation of the vascular lumen, vessel tree centerline extraction, individual branch segment measurement, and compensating for the non-ideal modulation transfer function of micro-CT scanners are presented. The extracted centerline accurately characterized the hierarchical structure of the vascular tree casts in terms of "parent-branch" relationships which allowed each interbranch segments' dimensions to be compared to the optical measurement method. The comparison results show a close to ideal 1:1 relationship for both length and diameter measurements made by the two methods. Combining the results from both specimens, the standard deviation of the difference between measurement methods was 19 microm for the measurement of interbranch segment diameters (ranging from 12 to 769 microm), and 172 microm for the measurement of interbranch segment lengths (ranging from 14 to 3252 microm). These results suggest that our micro-CT image analysis method can be used to characterize a vascular tree's hierarchical structure, and accurately measure interbranch segment lengths and diameters.

摘要

早期微血管分支几何形状的变化及其对疾病灌注分布的相关影响,尤其是在不同分支世代受到不同影响的情况下,需要能够在广泛的尺度上分析完整的血管树。微计算机断层扫描(micro-CT)为分析微血管分支几何形状提供了一个极好的框架。这种分析需要开发能够准确描述分支特性的方法,例如分支直径、长度、分支角度和微血管的分支连通性。本文的目的是报告对两个人心肌内冠状动脉血管树铸型的研究结果,其中微计算机断层扫描血管成像及其分析的准确性是通过光学显微镜(用作“金标准”)进行的测量来测试的。本文介绍了与血管管腔的图像分割、血管树中心线提取、单个分支段测量以及补偿微计算机断层扫描扫描仪不理想的调制传递函数相关的方法。提取的中心线准确地描述了血管铸型的层次结构,即“父分支”关系,这使得可以将每个分支间段的尺寸与光学测量方法进行比较。比较结果表明,两种方法测量的长度和直径都非常接近理想的 1:1 关系。将两个标本的结果结合起来,两种方法测量的分支间段直径(范围为 12 至 769 微米)之间的差异的测量方法的标准偏差为 19 微米,分支间段长度(范围为 14 至 3252 微米)之间的差异的测量方法的标准偏差为 172 微米。这些结果表明,我们的微计算机断层扫描图像分析方法可用于描述血管树的层次结构,并准确测量分支间段的长度和直径。

相似文献

1
Accuracy of microvascular measurements obtained from micro-CT images.
Ann Biomed Eng. 2010 Sep;38(9):2851-64. doi: 10.1007/s10439-010-0058-7. Epub 2010 May 11.
2
Stereological quantification of microvessels using semiautomated evaluation of X-ray microtomography of hepatic vascular corrosion casts.
Int J Comput Assist Radiol Surg. 2016 Oct;11(10):1803-19. doi: 10.1007/s11548-016-1378-3. Epub 2016 Mar 23.
3
Vasa vasorum growth in the coronary arteries of newborn pigs.
Anat Embryol (Berl). 2004 Aug;208(5):351-7. doi: 10.1007/s00429-004-0400-7. Epub 2004 Jul 28.
6
A skeleton-tree-based approach to acinar morphometric analysis using microcomputed tomography with comparison of acini in young and old C57BL/6 mice.
J Appl Physiol (1985). 2016 Jun 15;120(12):1402-9. doi: 10.1152/japplphysiol.00923.2015. Epub 2016 Mar 3.
7
Relating function to branching geometry: a micro-CT study of the hepatic artery, portal vein, and biliary tree.
Cells Tissues Organs. 2011;194(5):431-42. doi: 10.1159/000323482. Epub 2011 Apr 13.
8
Extraction of morphometry and branching angles of porcine coronary arterial tree from CT images.
Am J Physiol Heart Circ Physiol. 2009 Nov;297(5):H1949-55. doi: 10.1152/ajpheart.00093.2009. Epub 2009 Sep 11.
9
Impact of Effective Detector Pixel and CT Voxel Size on Accurate Estimation of Blood Volume in Opacified Microvasculature.
Acad Radiol. 2019 Oct;26(10):1410-1416. doi: 10.1016/j.acra.2018.11.013. Epub 2018 Dec 7.
10
Multi-generational analysis and visualization of the vascular tree in 3D micro-CT images.
Comput Biol Med. 2002 Mar;32(2):55-71. doi: 10.1016/s0010-4825(01)00034-8.

引用本文的文献

1
coronary calcium volume quantification using a high-spatial-resolution clinical photon-counting-detector computed tomography.
J Med Imaging (Bellingham). 2023 Jul;10(4):043501. doi: 10.1117/1.JMI.10.4.043501. Epub 2023 Jul 4.
2
Novel methodology for measuring intraoral wear in enamel and dental restorative materials.
Clin Exp Dent Res. 2020 Dec;6(6):677-685. doi: 10.1002/cre2.322. Epub 2020 Sep 21.
3
Computational Modeling of the Liver Arterial Blood Flow for Microsphere Therapy: Effect of Boundary Conditions.
Bioengineering (Basel). 2020 Jun 29;7(3):64. doi: 10.3390/bioengineering7030064.
4
Quantifying Vascular Changes Surrounding Bone Regeneration in a Porcine Mandibular Defect Using Computed Tomography.
Tissue Eng Part C Methods. 2019 Dec;25(12):721-731. doi: 10.1089/ten.tec.2019.0205.
5
Micro-CT and histological investigation of the spatial pattern of feto-placental vascular density.
Placenta. 2019 Dec;88:36-43. doi: 10.1016/j.placenta.2019.09.014. Epub 2019 Sep 29.
6
Renal auto-transplantation promotes cortical microvascular network remodeling in a preclinical porcine model.
PLoS One. 2017 Jul 13;12(7):e0181067. doi: 10.1371/journal.pone.0181067. eCollection 2017.
7
The impact of small motion on the visualization of coronary vessels and lesions in cardiac CT: A simulation study.
Med Phys. 2017 Jul;44(7):3512-3524. doi: 10.1002/mp.12295. Epub 2017 May 26.
8
Visualizing polymeric bioresorbable scaffolds with three-dimensional image reconstruction using contrast-enhanced micro-computed tomography.
Int J Cardiovasc Imaging. 2017 May;33(5):731-737. doi: 10.1007/s10554-016-1049-z. Epub 2016 Dec 30.
9
Growth, ageing and scaling laws of coronary arterial trees.
J R Soc Interface. 2015 Dec 6;12(113):20150830. doi: 10.1098/rsif.2015.0830.
10
Myocardial Perfusion: Characteristics of Distal Intramyocardial Arteriolar Trees.
Ann Biomed Eng. 2015 Nov;43(11):2771-9. doi: 10.1007/s10439-015-1325-4. Epub 2015 May 8.

本文引用的文献

1
Three-dimensional skeletonization: principle and algorithm.
IEEE Trans Pattern Anal Mach Intell. 1980 Jan;2(1):75-7. doi: 10.1109/tpami.1980.4766974.
3
Validation of image-based method for extraction of coronary morphometry.
Ann Biomed Eng. 2008 Mar;36(3):356-68. doi: 10.1007/s10439-008-9443-x. Epub 2008 Jan 29.
4
Diameter asymmetry of porcine coronary arterial trees: structural and functional implications.
Am J Physiol Heart Circ Physiol. 2008 Feb;294(2):H714-23. doi: 10.1152/ajpheart.00818.2007. Epub 2007 Nov 30.
5
Automatic segmentation of 3D micro-CT coronary vascular images.
Med Image Anal. 2007 Dec;11(6):630-47. doi: 10.1016/j.media.2007.06.012. Epub 2007 Aug 1.
6
System for the analysis and visualization of large 3D anatomical trees.
Comput Biol Med. 2007 Dec;37(12):1802-20. doi: 10.1016/j.compbiomed.2007.06.005. Epub 2007 Jul 31.
7
Subvoxel precise skeletons of volumetric data based on fast marching methods.
Med Phys. 2007 Feb;34(2):627-38. doi: 10.1118/1.2409238.
8
Branching morphology of the rat hepatic portal vein tree: a micro-CT study.
Ann Biomed Eng. 2006 Sep;34(9):1420-8. doi: 10.1007/s10439-006-9150-4. Epub 2006 Jul 13.
9
Comparing microsphere deposition and flow modeling in 3D vascular trees.
Am J Physiol Heart Circ Physiol. 2006 Nov;291(5):H2136-41. doi: 10.1152/ajpheart.00146.2006. Epub 2006 Jun 9.
10
Structural morphology of renal vasculature.
Am J Physiol Heart Circ Physiol. 2006 Jul;291(1):H296-309. doi: 10.1152/ajpheart.00814.2005. Epub 2006 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验