Suppr超能文献

一种使用二维多层磁共振成像进行三维高分辨率和高对比度成像的超分辨率框架。

A super-resolution framework for 3-D high-resolution and high-contrast imaging using 2-D multislice MRI.

作者信息

Shilling Richard Z, Robbie Trevor Q, Bailloeul Timothée, Mewes Klaus, Mersereau Russell M, Brummer Marijn E

机构信息

Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA.

出版信息

IEEE Trans Med Imaging. 2009 May;28(5):633-44. doi: 10.1109/TMI.2008.2007348. Epub 2008 Oct 31.

Abstract

A novel super-resolution reconstruction (SRR) framework in magnetic resonance imaging (MRI) is proposed. Its purpose is to produce images of both high resolution and high contrast desirable for image-guided minimally invasive brain surgery. The input data are multiple 2-D multislice inversion recovery MRI scans acquired at orientations with regular angular spacing rotated around a common frequency encoding axis. The output is a 3-D volume of isotropic high resolution. The inversion process resembles a localized projection reconstruction problem. Iterative algorithms for reconstruction are based on the projection onto convex sets (POCS) formalism. Results demonstrate resolution enhancement in simulated phantom studies, and ex vivo and in vivo human brain scans, carried out on clinical scanners. A comparison with previously published SRR methods shows favorable characteristics in the proposed approach.

摘要

提出了一种用于磁共振成像(MRI)的新型超分辨率重建(SRR)框架。其目的是生成图像引导下微创脑手术所需的高分辨率和高对比度图像。输入数据是围绕共同频率编码轴以规则角间距旋转的多个二维多层反转恢复MRI扫描。输出是一个各向同性高分辨率的三维体积。反转过程类似于局部投影重建问题。基于凸集投影(POCS)形式主义的迭代重建算法。结果表明,在临床扫描仪上进行的模拟体模研究、离体和活体人脑扫描中分辨率得到了提高。与先前发表的SRR方法的比较表明,该方法具有良好的特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验