Suppr超能文献

POSE:加速定量 MRI 的位置编码。

POSE: POSition Encoding for accelerated quantitative MRI.

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States.

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States.

出版信息

Magn Reson Imaging. 2024 Dec;114:110239. doi: 10.1016/j.mri.2024.110239. Epub 2024 Sep 12.

Abstract

Quantitative MRI utilizes multiple acquisitions with varying sequence parameters to sufficiently characterize a biophysical model of interest, resulting in undesirable scan times. Here we propose, validate and demonstrate a new general strategy for accelerating MRI using subvoxel shifting as a source of encoding called POSition Encoding (POSE). The POSE framework applies unique subvoxel shifts along the acquisition parameter dimension, thereby creating an extra source of encoding. Combining with a biophysical signal model of interest, accelerated and enhanced resolution maps of biophysical parameters are obtained. This has been validated and demonstrated through numerical Bloch equation simulations, phantom experiments and in vivo experiments using the variable flip angle signal model in 3D acquisitions as an application example. Monte Carlo simulations were performed using in vivo data to investigate our method's noise performance. POSE quantification results from numerical Bloch equation simulations of both a numerical phantom and realistic digital brain phantom concur well with the reference method, validating our method both theoretically and for realistic situations. NIST phantom experiment results show excellent overall agreement with the reference method, confirming our method's applicability for a wide range of T values. In vivo results not only exhibit good agreement with the reference method, but also show g-factors that significantly outperforms conventional parallel imaging methods with identical acceleration. Furthermore, our results show that POSE can be combined with parallel imaging to further accelerate while maintaining superior noise performance over parallel imaging that uses lower acceleration factors.

摘要

定量 MRI 利用具有不同序列参数的多次采集来充分描述感兴趣的生物物理模型,从而导致扫描时间过长。在这里,我们提出、验证并展示了一种使用亚像素移位作为编码源(称为位置编码(POSE))加速 MRI 的新通用策略。POSE 框架沿采集参数维度应用独特的亚像素移位,从而创建了额外的编码源。结合感兴趣的生物物理信号模型,可以获得加速和增强的生物物理参数分辨率图。这已经通过数值 Bloch 方程模拟、体模实验和使用 3D 采集中的可变翻转角信号模型的体内实验得到了验证和演示。使用体内数据进行了蒙特卡罗模拟,以研究我们方法的噪声性能。通过对数值体模和现实数字脑体模的数值 Bloch 方程模拟进行 POSE 定量,与参考方法非常吻合,从理论和实际情况验证了我们的方法。NIST 体模实验结果与参考方法非常吻合,证实了我们的方法适用于广泛的 T 值。体内结果不仅与参考方法吻合良好,而且显示的 g 因子明显优于具有相同加速倍数的传统并行成像方法。此外,我们的结果表明,POSE 可以与并行成像结合使用以进一步加速,同时在使用较低加速因子的并行成像中保持优越的噪声性能。

相似文献

1
POSE: POSition Encoding for accelerated quantitative MRI.POSE:加速定量 MRI 的位置编码。
Magn Reson Imaging. 2024 Dec;114:110239. doi: 10.1016/j.mri.2024.110239. Epub 2024 Sep 12.
6
Model-based super-resolution reconstruction of T maps.基于模型的 T 映射超分辨率重建。
Magn Reson Med. 2020 Mar;83(3):906-919. doi: 10.1002/mrm.27981. Epub 2019 Sep 13.
8
Computation of exact g-factor maps in 3D GRAPPA reconstructions.在 3D GRAPPA 重建中计算精确的 g 因子图。
Magn Reson Med. 2019 Feb;81(2):1353-1367. doi: 10.1002/mrm.27469. Epub 2018 Sep 6.

引用本文的文献

本文引用的文献

3
A standard system phantom for magnetic resonance imaging.一种用于磁共振成像的标准系统体模。
Magn Reson Med. 2021 Sep;86(3):1194-1211. doi: 10.1002/mrm.28779. Epub 2021 Apr 13.
6
Model-based super-resolution reconstruction of T maps.基于模型的 T 映射超分辨率重建。
Magn Reson Med. 2020 Mar;83(3):906-919. doi: 10.1002/mrm.27981. Epub 2019 Sep 13.
10
Recovery of Damped Exponentials Using Structured Low Rank Matrix Completion.使用结构化低秩矩阵补全恢复阻尼指数
IEEE Trans Med Imaging. 2017 Oct;36(10):2087-2098. doi: 10.1109/TMI.2017.2726995. Epub 2017 Jul 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验