Li Jie, Zhang Liqing, Tao Dacheng, Sun Han, Zhao Qibin
Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
IEEE Trans Neural Syst Rehabil Eng. 2009 Apr;17(2):107-15. doi: 10.1109/TNSRE.2008.2008394. Epub 2008 Nov 21.
Single trial electroencephalogram (EEG) classification is essential in developing brain-computer interfaces (BCIs). However, popular classification algorithms, e.g., common spatial patterns (CSP), usually highly depend on the prior neurophysiologic knowledge for noise removing, although this knowledge is not always known in practical applications. In this paper, a novel tensor-based scheme is proposed for single trial EEG classification, which performs well without the prior neurophysiologic knowledge. In this scheme, EEG signals are represented in the spatial-spectral-temporal domain by the wavelet transform, the multilinear discriminative subspace is reserved by the general tensor discriminant analysis (GTDA), redundant indiscriminative patterns are removed by Fisher score, and the classification is conducted by the support vector machine (SVM). Applications to three datasets confirm the effectiveness and the robustness of the proposed tensor scheme in analyzing EEG signals, especially in the case of lacking prior neurophysiologic knowledge.
单次试验脑电图(EEG)分类对于脑机接口(BCI)的发展至关重要。然而,流行的分类算法,例如共同空间模式(CSP),通常高度依赖先验神经生理学知识来去除噪声,尽管在实际应用中这种知识并不总是已知的。本文提出了一种新颖的基于张量的方案用于单次试验EEG分类,该方案在没有先验神经生理学知识的情况下也能表现良好。在该方案中,EEG信号通过小波变换在空间 - 频谱 - 时间域中表示,通过广义张量判别分析(GTDA)保留多线性判别子空间,通过Fisher分数去除冗余的非判别模式,并由支持向量机(SVM)进行分类。对三个数据集的应用证实了所提出的张量方案在分析EEG信号方面的有效性和鲁棒性,特别是在缺乏先验神经生理学知识的情况下。