Suppr超能文献

一种用于单次试验脑电图分类的、无需先验神经生理学知识的基于张量的方案。

A prior neurophysiologic knowledge free tensor-based scheme for single trial EEG classification.

作者信息

Li Jie, Zhang Liqing, Tao Dacheng, Sun Han, Zhao Qibin

机构信息

Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2009 Apr;17(2):107-15. doi: 10.1109/TNSRE.2008.2008394. Epub 2008 Nov 21.

Abstract

Single trial electroencephalogram (EEG) classification is essential in developing brain-computer interfaces (BCIs). However, popular classification algorithms, e.g., common spatial patterns (CSP), usually highly depend on the prior neurophysiologic knowledge for noise removing, although this knowledge is not always known in practical applications. In this paper, a novel tensor-based scheme is proposed for single trial EEG classification, which performs well without the prior neurophysiologic knowledge. In this scheme, EEG signals are represented in the spatial-spectral-temporal domain by the wavelet transform, the multilinear discriminative subspace is reserved by the general tensor discriminant analysis (GTDA), redundant indiscriminative patterns are removed by Fisher score, and the classification is conducted by the support vector machine (SVM). Applications to three datasets confirm the effectiveness and the robustness of the proposed tensor scheme in analyzing EEG signals, especially in the case of lacking prior neurophysiologic knowledge.

摘要

单次试验脑电图(EEG)分类对于脑机接口(BCI)的发展至关重要。然而,流行的分类算法,例如共同空间模式(CSP),通常高度依赖先验神经生理学知识来去除噪声,尽管在实际应用中这种知识并不总是已知的。本文提出了一种新颖的基于张量的方案用于单次试验EEG分类,该方案在没有先验神经生理学知识的情况下也能表现良好。在该方案中,EEG信号通过小波变换在空间 - 频谱 - 时间域中表示,通过广义张量判别分析(GTDA)保留多线性判别子空间,通过Fisher分数去除冗余的非判别模式,并由支持向量机(SVM)进行分类。对三个数据集的应用证实了所提出的张量方案在分析EEG信号方面的有效性和鲁棒性,特别是在缺乏先验神经生理学知识的情况下。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验