Wang Haixian, Zheng Wenming
Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, Jiangsu, China.
IEEE Trans Neural Syst Rehabil Eng. 2008 Apr;16(2):131-9. doi: 10.1109/TNSRE.2007.914468.
In this paper, we propose a novel optimal spatio-temporal filter, termed local temporal common spatial patterns (LTCSP), for robust single-trial elctroencephalogram (EEG) classification. Different from classical common spatial patterns (CSP) that uses only global spatial covariances to compute the optimal filter, LTCSP considers temporally local information in the variance modelling. The underlying manifold variances of EEG signals contain more discriminative information. LTCSP is an extension to CSP in the sense that CSP can be derived from LTCSP under a special case. By constructing an adjacency matrix, LTCSP is formulated as an eigenvalue problem. So, LTCSP is computationally as straightforward as CSP. However, LTCSP has better discrimination ability than CSP and is much more robust. Simulated experiment and real EEG classification demonstrate the effectiveness of the proposed LTCSP method.
在本文中,我们提出了一种新颖的最优时空滤波器,称为局部时间公共空间模式(LTCSP),用于稳健的单次试验脑电图(EEG)分类。与仅使用全局空间协方差来计算最优滤波器的经典公共空间模式(CSP)不同,LTCSP在方差建模中考虑了时间局部信息。EEG信号的潜在流形方差包含更多的判别信息。LTCSP是CSP的扩展,因为在特殊情况下CSP可以从LTCSP推导得出。通过构造邻接矩阵,LTCSP被公式化为一个特征值问题。因此,LTCSP在计算上与CSP一样直接。然而,LTCSP比CSP具有更好的判别能力,并且更加稳健。模拟实验和实际EEG分类证明了所提出的LTCSP方法的有效性。