Suppr超能文献

身体与大脑温度耦合:脑血流的关键作用。

Body and brain temperature coupling: the critical role of cerebral blood flow.

作者信息

Zhu Mingming, Ackerman Joseph J H, Yablonskiy Dmitriy A

机构信息

Department of Radiology, Washington University, St Louis, MO 63130, USA.

出版信息

J Comp Physiol B. 2009 Aug;179(6):701-10. doi: 10.1007/s00360-009-0352-6. Epub 2009 Mar 11.

Abstract

Direct measurements of deep-brain and body-core temperature were performed on rats to determine the influence of cerebral blood flow (CBF) on brain temperature regulation under static and dynamic conditions. Static changes of CBF were achieved using different anesthetics (chloral hydrate, CH; alpha-chloralose, alphaCS; and isoflurane, IF) with alphaCS causing larger decreases in CBF than CH and IF; dynamic changes were achieved by inducing transient hypercapnia (5% CO(2) in 40% O(2) and 55% N(2)). Initial deep-brain/body-core temperature differentials were anesthetic-type dependent with the largest differential observed with rats under alphaCS anesthesia (ca. 2 degrees C). Hypercapnia induction raised rat brain temperature under all three anesthesia regimes, but by different anesthetic-dependent amounts correlated with the initial differentials--alphaCS anesthesia resulted in the largest brain temperature increase (0.32 +/- 0.08 degrees C), while CH and IF anesthesia lead to smaller increases (0.12 +/- 0.03 and 0.16 +/- 0.05 degrees C, respectively). The characteristic temperature transition time for the hypercapnia-induced temperature increase was 2-3 min under CH and IF anesthesia and approximately 4 min under alphaCS anesthesia. We conclude that both, the deep-brain/body-core temperature differential and the characteristic temperature transition time correlate with CBF: a lower CBF promotes higher deep-brain/body-core temperature differentials and, upon hypercapnia challenge, longer characteristic transition times to increased temperatures.

摘要

对大鼠进行了脑深部和体核温度的直接测量,以确定在静态和动态条件下脑血流量(CBF)对脑温度调节的影响。使用不同的麻醉剂(水合氯醛,CH;α-氯醛糖,αCS;异氟烷,IF)实现CBF的静态变化,其中αCS导致的CBF下降幅度大于CH和IF;通过诱导短暂性高碳酸血症(40%氧气和55%氮气中的5%二氧化碳)实现动态变化。最初的脑深部/体核温度差异取决于麻醉剂类型,在αCS麻醉下的大鼠中观察到最大差异(约2℃)。在所有三种麻醉方案下,高碳酸血症诱导均使大鼠脑温度升高,但升高幅度因麻醉剂而异,与初始差异相关——αCS麻醉导致脑温度升高幅度最大(0.32±0.08℃),而CH和IF麻醉导致的升高幅度较小(分别为0.12±0.03℃和0.16±0.05℃)。在CH和IF麻醉下,高碳酸血症诱导的温度升高的特征性温度转变时间为2 - 3分钟,在αCS麻醉下约为4分钟。我们得出结论,脑深部/体核温度差异和特征性温度转变时间均与CBF相关:较低的CBF会促进更高的脑深部/体核温度差异,并且在高碳酸血症刺激下,温度升高的特征性转变时间更长。

相似文献

1
Body and brain temperature coupling: the critical role of cerebral blood flow.
J Comp Physiol B. 2009 Aug;179(6):701-10. doi: 10.1007/s00360-009-0352-6. Epub 2009 Mar 11.
6
Nitric oxide-dependent and -independent components of cerebrovasodilation elicited by hypercapnia.
Am J Physiol. 1994 Feb;266(2 Pt 2):R546-52. doi: 10.1152/ajpregu.1994.266.2.R546.
7
Differential effects of anesthetics on cocaine's pharmacokinetic and pharmacodynamic effects in brain.
Eur J Neurosci. 2009 Oct;30(8):1565-75. doi: 10.1111/j.1460-9568.2009.06931.x. Epub 2009 Oct 12.
9
Comparing the Effects of Isoflurane and Alpha Chloralose upon Mouse Physiology.
PLoS One. 2016 May 5;11(5):e0154936. doi: 10.1371/journal.pone.0154936. eCollection 2016.
10
Cerebrovascular responsiveness to carbon dioxide in dogs with 1.4% and 2.8% isoflurane.
Anesthesiology. 1989 May;70(5):843-50. doi: 10.1097/00000542-198905000-00022.

引用本文的文献

1
Programmable scanning diffuse speckle contrast imaging of cerebral blood flow.
Neurophotonics. 2025 Jan;12(1):015006. doi: 10.1117/1.NPh.12.1.015006. Epub 2025 Jan 27.
4
Effects of Hypoxia on Cerebral Microvascular Angiogenesis: Benefits or Damages?
Aging Dis. 2023 Apr 1;14(2):370-385. doi: 10.14336/AD.2022.0902.
9
Resting-State Brain Temperature: Dynamic Fluctuations in Brain Temperature and the Brain-Body Temperature Gradient.
J Magn Reson Imaging. 2023 Apr;57(4):1222-1228. doi: 10.1002/jmri.28376. Epub 2022 Jul 29.
10
DWI-based MR thermometry: could it discriminate Alzheimer's disease from mild cognitive impairment and healthy subjects?
Neuroradiology. 2022 Oct;64(10):1979-1987. doi: 10.1007/s00234-022-02969-y. Epub 2022 May 10.

本文引用的文献

1
Brain cooling maintenance with cooling cap following induction with intracarotid cold saline infusion: a quantitative model.
J Theor Biol. 2008 Jul 21;253(2):333-44. doi: 10.1016/j.jtbi.2008.03.025. Epub 2008 Mar 27.
3
Integration of jugular venous return and circle of Willis in a theoretical human model of selective brain cooling.
J Appl Physiol (1985). 2007 Nov;103(5):1837-47. doi: 10.1152/japplphysiol.00542.2007. Epub 2007 Aug 30.
4
Exercise and heat stress: cerebral challenges and consequences.
Prog Brain Res. 2007;162:29-43. doi: 10.1016/S0079-6123(06)62003-7.
5
Thermoregulation in pronghorn antelope (Antilocapra americana Ord) in the summer.
J Exp Biol. 2007 Jul;210(Pt 14):2444-52. doi: 10.1242/jeb.005587.
6
Guttural pouches, brain temperature and exercise in horses.
Biol Lett. 2006 Sep 22;2(3):475-7. doi: 10.1098/rsbl.2006.0469.
7
The contribution of carotid rete variability to brain temperature variability in sheep in a thermoneutral environment.
Am J Physiol Regul Integr Comp Physiol. 2007 Mar;292(3):R1298-305. doi: 10.1152/ajpregu.00275.2006. Epub 2006 Nov 2.
8
Theoretical model of temperature regulation in the brain during changes in functional activity.
Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):12144-9. doi: 10.1073/pnas.0604376103. Epub 2006 Jul 31.
9
How the body controls brain temperature: the temperature shielding effect of cerebral blood flow.
J Appl Physiol (1985). 2006 Nov;101(5):1481-8. doi: 10.1152/japplphysiol.00319.2006. Epub 2006 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验