Suppr超能文献

大肠杆菌趋化作用中的对数感应

Logarithmic sensing in Escherichia coli bacterial chemotaxis.

作者信息

Kalinin Yevgeniy V, Jiang Lili, Tu Yuhai, Wu Mingming

机构信息

School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA.

出版信息

Biophys J. 2009 Mar 18;96(6):2439-48. doi: 10.1016/j.bpj.2008.10.027.

Abstract

We studied the response of swimming Escherichia coli (E. coli) bacteria in a comprehensive set of well-controlled chemical concentration gradients using a newly developed microfluidic device and cell tracking imaging technique. In parallel, we carried out a multi-scale theoretical modeling of bacterial chemotaxis taking into account the relevant internal signaling pathway dynamics, and predicted bacterial chemotactic responses at the cellular level. By measuring the E. coli cell density profiles across the microfluidic channel at various spatial gradients of ligand concentration grad[L] and the average ligand concentration [L] near the peak chemotactic response region, we demonstrated unambiguously in both experiments and model simulation that the mean chemotactic drift velocity of E. coli cells increased monotonically with grad [L]/[L] or approximately grad(log[L])--that is E. coli cells sense the spatial gradient of the logarithmic ligand concentration. The exact range of the log-sensing regime was determined. The agreements between the experiments and the multi-scale model simulation verify the validity of the theoretical model, and revealed that the key microscopic mechanism for logarithmic sensing in bacterial chemotaxis is the adaptation kinetics, in contrast to explanations based directly on ligand occupancy.

摘要

我们使用新开发的微流控装置和细胞追踪成像技术,在一系列严格控制的化学浓度梯度条件下,研究了游泳状态的大肠杆菌的反应。同时,我们进行了细菌趋化性的多尺度理论建模,考虑了相关的内部信号通路动力学,并预测了细胞水平上的细菌趋化反应。通过测量在配体浓度梯度grad[L]的各种空间梯度以及趋化反应峰值区域附近的平均配体浓度[L]条件下,微流控通道中大肠杆菌的细胞密度分布,我们在实验和模型模拟中都明确证明,大肠杆菌细胞的平均趋化漂移速度随grad[L]/[L]或近似随grad(log[L])单调增加,即大肠杆菌细胞能够感知对数配体浓度的空间梯度。确定了对数感知机制的精确范围。实验与多尺度模型模拟之间的一致性验证了理论模型的有效性,并揭示了细菌趋化性中对数感知的关键微观机制是适应动力学,这与直接基于配体占据情况的解释形成对比。

相似文献

1
Logarithmic sensing in Escherichia coli bacterial chemotaxis.
Biophys J. 2009 Mar 18;96(6):2439-48. doi: 10.1016/j.bpj.2008.10.027.
2
Coarse graining Escherichia coli chemotaxis: from multi-flagella propulsion to logarithmic sensing.
Adv Exp Med Biol. 2012;736:381-96. doi: 10.1007/978-1-4419-7210-1_22.
3
Quantitative modeling of Escherichia coli chemotactic motion in environments varying in space and time.
PLoS Comput Biol. 2010 Apr 8;6(4):e1000735. doi: 10.1371/journal.pcbi.1000735.
4
Multiplexed microfluidic screening of bacterial chemotaxis.
Elife. 2023 Jul 24;12:e85348. doi: 10.7554/eLife.85348.
5
Theoretical results for chemotactic response and drift of E. coli in a weak attractant gradient.
J Theor Biol. 2010 Sep 7;266(1):99-106. doi: 10.1016/j.jtbi.2010.06.012. Epub 2010 Jun 15.
7
The Role of Adaptation in Bacterial Speed Races.
PLoS Comput Biol. 2016 Jun 3;12(6):e1004974. doi: 10.1371/journal.pcbi.1004974. eCollection 2016 Jun.
8
Investigation of bacterial chemotaxis in flow-based microfluidic devices.
Nat Protoc. 2010 May;5(5):864-72. doi: 10.1038/nprot.2010.18. Epub 2010 Apr 15.
9
Simultaneous high gain and wide dynamic range in a model of bacterial chemotaxis.
IET Syst Biol. 2007 Jul;1(4):222-9. doi: 10.1049/iet-syb:20070003.
10
Escape band in chemotaxis in opposing attractant and nutrient gradients.
Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):2253-2258. doi: 10.1073/pnas.1808200116. Epub 2019 Jan 23.

引用本文的文献

1
Optimal Cell Length for Exploration and Exploitation in Chemotactic Planktonic Bacteria.
Environ Microbiol. 2024 Dec;26(12):e70021. doi: 10.1111/1462-2920.70021.
2
Decoding physical principles of cell migration under controlled environment using microfluidics.
Biophys Rev (Melville). 2024 Jul 29;5(3):031302. doi: 10.1063/5.0199161. eCollection 2024 Sep.
3
Chemotaxing do not count single molecules.
ArXiv. 2024 Nov 27:arXiv:2407.07264v2.
4
do not count single molecules.
bioRxiv. 2024 Jul 13:2024.07.09.602750. doi: 10.1101/2024.07.09.602750.
5
Learning optimal integration of spatial and temporal information in noisy chemotaxis.
PNAS Nexus. 2024 Jun 14;3(7):pgae235. doi: 10.1093/pnasnexus/pgae235. eCollection 2024 Jul.
6
Potassium-mediated bacterial chemotactic response.
Elife. 2024 Jun 4;12:RP91452. doi: 10.7554/eLife.91452.
7
Microfluidic approaches in microbial ecology.
Lab Chip. 2024 Feb 27;24(5):1394-1418. doi: 10.1039/d3lc00784g.
8
Multiplexed microfluidic screening of bacterial chemotaxis.
Elife. 2023 Jul 24;12:e85348. doi: 10.7554/eLife.85348.
9
Methods and Measures for Investigating Microscale Motility.
Integr Comp Biol. 2023 Dec 29;63(6):1485-1508. doi: 10.1093/icb/icad075.
10
Directed colloidal assembly and banding via DC electrokinetics.
Biomicrofluidics. 2023 May 9;17(3):031301. doi: 10.1063/5.0133871. eCollection 2023 May.

本文引用的文献

2
Role of HAMP domains in chemotaxis signaling by bacterial chemoreceptors.
Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16555-60. doi: 10.1073/pnas.0806401105. Epub 2008 Oct 21.
3
Modeling the chemotactic response of Escherichia coli to time-varying stimuli.
Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14855-60. doi: 10.1073/pnas.0807569105. Epub 2008 Sep 23.
4
Experimental verification of the behavioral foundation of bacterial transport parameters using microfluidics.
Biophys J. 2008 Nov 1;95(9):4481-93. doi: 10.1529/biophysj.108.134510. Epub 2008 Jul 25.
5
Overview of mathematical approaches used to model bacterial chemotaxis I: the single cell.
Bull Math Biol. 2008 Aug;70(6):1525-69. doi: 10.1007/s11538-008-9321-6. Epub 2008 Jul 19.
6
Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations.
Bull Math Biol. 2008 Aug;70(6):1570-607. doi: 10.1007/s11538-008-9322-5. Epub 2008 Jul 19.
7
Relationship between cellular response and behavioral variability in bacterial chemotaxis.
Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3304-9. doi: 10.1073/pnas.0705463105. Epub 2008 Feb 25.
8
A hydrogel-based microfluidic device for the studies of directed cell migration.
Lab Chip. 2007 Jun;7(6):763-9. doi: 10.1039/b618463d. Epub 2007 Apr 4.
9
Microfabrication meets microbiology.
Nat Rev Microbiol. 2007 Mar;5(3):209-18. doi: 10.1038/nrmicro1616.
10
Physical responses of bacterial chemoreceptors.
J Mol Biol. 2007 Mar 9;366(5):1416-23. doi: 10.1016/j.jmb.2006.12.024. Epub 2006 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验