Suppr超能文献

在进行生物处理的多环芳烃污染土壤中,芳烃受体激动剂和遗传毒性剂的生物利用度。

AhR agonist and genotoxicant bioavailability in a PAH-contaminated soil undergoing biological treatment.

作者信息

Andersson Erika, Rotander Anna, von Kronhelm Thomas, Berggren Anna, Ivarsson Per, Hollert Henner, Engwall Magnus

机构信息

Man-Technology-Environment Research Centre, School of Science and Technology, Orebro University, 701 82 Orebro, Sweden.

出版信息

Environ Sci Pollut Res Int. 2009 Jul;16(5):521-30. doi: 10.1007/s11356-009-0121-9. Epub 2009 Mar 19.

Abstract

BACKGROUND, AIM, AND SCOPE: Degradation of the 16 US EPA priority PAHs in soil subjected to bioremediation is often achieved. However, the PAH loss is not always followed by a reduction in soil toxicity. For instance, bioanalytical testing of such soil using the chemical-activated luciferase gene expression (CALUX) assay, measuring the combined effect of all Ah receptor (AhR) activating compounds, occasionally indicates that the loss of PAHs does not correlate with the loss of Ah receptor-active compounds in the soil. In addition, standard PAH analysis does not address the issue of total toxicant bioavailability in bioremediated soil.

MATERIALS AND METHODS

To address these questions, we have used the CALUX AhR agonist bioassay and the Comet genotoxicity bioassay with RTL-W1 cells to evaluate the toxic potential of different extracts from a PAH-contaminated soil undergoing large-scale bioremediation. The extracts were also chemically analyzed for PAH16 and PCDD/PCDF. Soil sampled on five occasions between day 0 and day 274 of biological treatment was shaken with n-butanol with vortex mixing at room temperature to determine the bioavailable fraction of contaminants. To establish total concentrations, parts of the same samples were extracted using an accelerated solvent extractor (ASE) with toluene at 100 degrees C. The extracts were tested as inducers of AhR-dependent luciferase activity in the CALUX assay and for DNA breakage potential in the Comet bioassay.

RESULTS

The chemical analysis of the toluene extracts indicated slow degradation rates and the CALUX assay indicated high levels of AhR agonists in the same extracts. Compared to day 0, the bioavailable fractions showed no decrease in AhR agonist activity during the treatment but rather an up-going trend, which was supported by increasing levels of PAHs and an increased effect in the Comet bioassay after 274 days. The bio-TEQs calculated using the CALUX assay were higher than the TEQs calculated from chemical analysis in both extracts, indicating that there are additional toxic PAHs in both extracts that are not included in the chemically derived TEQ.

DISCUSSION

The response in the CALUX and the Comet bioassays as well as the chemical analysis indicate that the soil might be more toxic to organisms living in soil after 274 days of treatment than in the untreated soil, due to the release of previously sorbed PAHs and possibly also metabolic formation of novel toxicants.

CONCLUSIONS

Our results put focus on the issue of slow degradation rates and bioavailability of PAHs during large-scale bioremediation treatments. The release of sorbed PAHs at the investigated PAH-contaminated site seemed to be faster than the degradation rate, which demonstrates the importance of considering the bioavailable fraction of contaminants during a bioremediation process.

RECOMMENDATIONS AND PERSPECTIVES

It has to be ensured that soft remediation methods like biodegradation or the natural remediation approach do not result in the mobilization of toxic compounds including more mobile degradation products. For PAH-contaminated sites this cannot be assured merely by monitoring the 16 target PAHs. The combined use of a battery of biotests for different types of PAH effects such as the CALUX and the Comet assay together with bioavailability extraction methods may be a useful screening tool of bioremediation processes of PAH-contaminated soil and contribute to a more accurate risk assessment. If the bioremediation causes a release of bound PAHs that are left undegraded in an easily extracted fraction, the soil may be more toxic to organisms living in the soil as a result of the treatment. A prolonged treatment time may be one way to reduce the risk of remaining mobile PAHs. In critical cases, the remediation concept might have to be changed to ex situ remediation methods.

摘要

背景、目的与范围:在进行生物修复的土壤中,16种美国环保署优先控制的多环芳烃(PAHs)通常会发生降解。然而,PAH的损失并不总是伴随着土壤毒性的降低。例如,使用化学激活荧光素酶基因表达(CALUX)分析对这类土壤进行生物分析测试,以测量所有芳烃受体(AhR)激活化合物的综合效应,结果偶尔表明PAHs的损失与土壤中Ah受体活性化合物的损失并不相关。此外,标准的PAH分析并未涉及生物修复土壤中总毒物生物可利用性的问题。

材料与方法

为解决这些问题,我们使用CALUX AhR激动剂生物分析和彗星基因毒性生物分析以及RTL-W1细胞来评估来自一块正在进行大规模生物修复的PAH污染土壤的不同提取物的潜在毒性。对提取物还进行了PAH16和多氯二苯并对二噁英/多氯二苯并呋喃的化学分析。在生物处理的第0天至第274天期间分五次采集的土壤样本,在室温下与正丁醇一起振荡并涡旋混合,以确定污染物的生物可利用部分。为确定总浓度,使用加速溶剂萃取仪(ASE)在100℃下用甲苯萃取相同样本的部分。提取物在CALUX分析中作为AhR依赖性荧光素酶活性的诱导剂进行测试,并在彗星生物分析中测试其DNA断裂潜力。

结果

甲苯提取物的化学分析表明降解速率缓慢,而CALUX分析表明相同提取物中AhR激动剂含量很高。与第0天相比,生物可利用部分在处理期间AhR激动剂活性没有降低,反而呈上升趋势,这得到了PAHs含量增加以及274天后彗星生物分析中效应增强的支持。使用CALUX分析计算的生物毒性当量(bio-TEQs)高于两种提取物中化学分析计算的毒性当量(TEQs),表明两种提取物中都存在化学衍生TEQ未包含的其他有毒PAHs。

讨论

CALUX和彗星生物分析的结果以及化学分析表明,由于先前吸附的PAHs的释放以及可能还有新的有毒物质的代谢形成,处理274天后的土壤对生活在土壤中的生物可能比未处理的土壤毒性更大。

结论

我们的结果关注了大规模生物修复处理过程中PAHs降解速率缓慢和生物可利用性的问题。在所研究的PAH污染场地,吸附的PAHs的释放似乎比降解速率快,这表明在生物修复过程中考虑污染物的生物可利用部分的重要性。

建议与展望

必须确保诸如生物降解或自然修复方法等温和的修复方法不会导致包括更易移动的降解产物在内的有毒化合物的迁移。对于PAH污染场地,仅通过监测16种目标PAHs无法确保这一点。结合使用一系列针对不同类型PAH效应的生物测试,如CALUX和彗星分析以及生物可利用性提取方法,可能是PAH污染土壤生物修复过程的一种有用的筛选工具,并有助于进行更准确的风险评估。如果生物修复导致结合的PAHs释放到易于提取的部分且未被降解,那么处理后的土壤对生活在土壤中的生物可能毒性更大。延长处理时间可能是降低残留可移动PAHs风险的一种方法。在关键情况下,修复方案可能不得不改为异位修复方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验