Suppr超能文献

降低维度以预测全基因组育种值。

Reducing dimensionality for prediction of genome-wide breeding values.

作者信息

Solberg Trygve R, Sonesson Anna K, Woolliams John A, Meuwissen Theo H E

机构信息

Norwegian University of Life Sciences, Department of Animal and Aquacultural Sciences, As, Norway.

出版信息

Genet Sel Evol. 2009 Mar 18;41(1):29. doi: 10.1186/1297-9686-41-29.

Abstract

Partial least square regression (PLSR) and principal component regression (PCR) are methods designed for situations where the number of predictors is larger than the number of records. The aim was to compare the accuracy of genome-wide breeding values (EBV) produced using PLSR and PCR with a Bayesian method, 'BayesB'. Marker densities of 1, 2, 4 and 8 Ne markers/Morgan were evaluated when the effective population size (Ne) was 100. The correlation between true breeding value and estimated breeding value increased with density from 0.611 to 0.681 and 0.604 to 0.658 using PLSR and PCR respectively, with an overall advantage to PLSR of 0.016 (s.e = 0.008). Both methods gave a lower accuracy compared to the 'BayesB', for which accuracy increased from 0.690 to 0.860. PLSR and PCR appeared less responsive to increased marker density with the advantage of 'BayesB' increasing by 17% from a marker density of 1 to 8Ne/M. PCR and PLSR showed greater bias than 'BayesB' in predicting breeding values at all densities. Although, the PLSR and PCR were computationally faster and simpler, these advantages do not outweigh the reduction in accuracy, and there is a benefit in obtaining relevant prior information from the distribution of gene effects.

摘要

偏最小二乘回归(PLSR)和主成分回归(PCR)是为预测变量数量大于记录数量的情况而设计的方法。目的是将使用PLSR和PCR产生的全基因组育种值(EBV)的准确性与一种贝叶斯方法“BayesB”进行比较。当有效种群大小(Ne)为100时,评估了每摩根1、2、4和8个Ne标记的标记密度。使用PLSR和PCR时,真实育种值与估计育种值之间的相关性分别随着密度从0.611增加到0.681和从0.604增加到0.658,PLSR总体优势为0.016(标准误 = 0.008)。与“BayesB”相比,这两种方法的准确性都较低,“BayesB”的准确性从0.690增加到0.860。PLSR和PCR对增加的标记密度反应较小,“BayesB”的优势从每摩根1个标记密度到8个Ne标记密度增加了17%。在所有密度下,PCR和PLSR在预测育种值时显示出比“BayesB”更大的偏差。虽然PLSR和PCR在计算上更快且更简单,但这些优势并不能抵消准确性的降低,并且从基因效应分布中获得相关先验信息是有好处的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7025/2671482/2788bace7679/1297-9686-41-29-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验