Suppr超能文献

关于遗传值的标记辅助预测:超越岭回归

On marker-assisted prediction of genetic value: beyond the ridge.

作者信息

Gianola Daniel, Perez-Enciso Miguel, Toro Miguel A

机构信息

Department of Animal Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA.

出版信息

Genetics. 2003 Jan;163(1):347-65. doi: 10.1093/genetics/163.1.347.

Abstract

Marked-assisted genetic improvement of agricultural species exploits statistical dependencies in the joint distribution of marker genotypes and quantitative traits. An issue is how molecular (e.g., dense marker maps) and phenotypic information (e.g., some measure of yield in plants) is to be used for predicting the genetic value of candidates for selection. Multiple regression, selection index techniques, best linear unbiased prediction, and ridge regression of phenotypes on marker genotypes have been suggested, as well as more elaborate methods. Here, phenotype-marker associations are modeled hierarchically via multilevel models including chromosomal effects, a spatial covariance of marked effects within chromosomes, background genetic variability, and family heterogeneity. Lorenz curves and Gini coefficients are suggested for assessing the inequality of the contribution of different marked effects to genetic variability. Classical and Bayesian methods are presented. The Bayesian approach includes a Markov chain Monte Carlo implementation. The generality and flexibility of the Bayesian method is illustrated when a Lorenz curve is to be inferred.

摘要

农业物种的标记辅助遗传改良利用了标记基因型和数量性状联合分布中的统计相关性。一个问题是如何利用分子信息(如高密度标记图谱)和表型信息(如植物产量的某种度量)来预测选择候选个体的遗传价值。有人提出了多元回归、选择指数技术、最佳线性无偏预测以及基于标记基因型的表型岭回归等方法,还有更复杂的方法。在此,通过包括染色体效应、染色体内标记效应的空间协方差、背景遗传变异性和家系异质性的多级模型,对表型 - 标记关联进行分层建模。建议使用洛伦兹曲线和基尼系数来评估不同标记效应对遗传变异性贡献的不平等性。介绍了经典方法和贝叶斯方法。贝叶斯方法包括马尔可夫链蒙特卡罗实现。当推断洛伦兹曲线时,说明了贝叶斯方法的通用性和灵活性。

相似文献

1
On marker-assisted prediction of genetic value: beyond the ridge.
Genetics. 2003 Jan;163(1):347-65. doi: 10.1093/genetics/163.1.347.
3
A bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo.
Genetics. 1996 Oct;144(2):805-16. doi: 10.1093/genetics/144.2.805.
5
Detection of multiple QTL with epistatic effects under a mixed inheritance model in an outbred population.
Genet Sel Evol. 2004 Jul-Aug;36(4):415-33. doi: 10.1186/1297-9686-36-4-415.
6
Bayesian point estimation of quantitative trait loci.
Biometrics. 2004 Mar;60(1):60-8. doi: 10.1111/j.0006-341X.2004.00167.x.
7
Toward integration of genomic selection with crop modelling: the development of an integrated approach to predicting rice heading dates.
Theor Appl Genet. 2016 Apr;129(4):805-817. doi: 10.1007/s00122-016-2667-5. Epub 2016 Jan 20.
8
Additive genetic variability and the Bayesian alphabet.
Genetics. 2009 Sep;183(1):347-63. doi: 10.1534/genetics.109.103952. Epub 2009 Jul 20.
9
The use of multiple markers in a Bayesian method for mapping quantitative trait loci.
Genetics. 1996 Aug;143(4):1831-42. doi: 10.1093/genetics/143.4.1831.

引用本文的文献

1
Review of applications of artificial intelligence (AI) methods in crop research.
J Appl Genet. 2024 May;65(2):225-240. doi: 10.1007/s13353-023-00826-z. Epub 2024 Jan 13.
2
Genomic selection for agronomic traits in a winter wheat breeding program.
Theor Appl Genet. 2023 Mar 10;136(3):38. doi: 10.1007/s00122-023-04294-1.
3
The statistical theory of linear selection indices from phenotypic to genomic selection.
Crop Sci. 2022 Mar-Apr;62(2):537-563. doi: 10.1002/csc2.20676. Epub 2022 Feb 6.
4
Average semivariance yields accurate estimates of the fraction of marker-associated genetic variance and heritability in complex trait analyses.
PLoS Genet. 2021 Aug 26;17(8):e1009762. doi: 10.1371/journal.pgen.1009762. eCollection 2021 Aug.
5
Genomic Selection in Tropical Forage Grasses: Current Status and Future Applications.
Front Plant Sci. 2021 Apr 30;12:665195. doi: 10.3389/fpls.2021.665195. eCollection 2021.
6
Adoption and Optimization of Genomic Selection To Sustain Breeding for Apricot Fruit Quality.
G3 (Bethesda). 2020 Dec 3;10(12):4513-4529. doi: 10.1534/g3.120.401452.
7
PANOMICS meets germplasm.
Plant Biotechnol J. 2020 Jul;18(7):1507-1525. doi: 10.1111/pbi.13372. Epub 2020 May 19.
9
A Multiple-Trait Bayesian Lasso for Genome-Enabled Analysis and Prediction of Complex Traits.
Genetics. 2020 Feb;214(2):305-331. doi: 10.1534/genetics.119.302934. Epub 2019 Dec 26.
10
A certain invariance property of BLUE in a whole-genome regression context.
J Anim Breed Genet. 2019 Mar;136(2):113-117. doi: 10.1111/jbg.12378. Epub 2019 Jan 7.

本文引用的文献

1
The Genetic Basis for Constructing Selection Indexes.
Genetics. 1943 Nov;28(6):476-90. doi: 10.1093/genetics/28.6.476.
3
On prediction of genetic values in marker-assisted selection.
Genetics. 2001 Nov;159(3):1375-81. doi: 10.1093/genetics/159.3.1375.
4
The distribution of the effects of genes affecting quantitative traits in livestock.
Genet Sel Evol. 2001 May-Jun;33(3):209-29. doi: 10.1186/1297-9686-33-3-209.
5
Prediction of total genetic value using genome-wide dense marker maps.
Genetics. 2001 Apr;157(4):1819-29. doi: 10.1093/genetics/157.4.1819.
6
The human transcriptome map: clustering of highly expressed genes in chromosomal domains.
Science. 2001 Feb 16;291(5507):1289-92. doi: 10.1126/science.1056794.
7
Marker-assisted selection using ridge regression.
Genet Res. 2000 Apr;75(2):249-52. doi: 10.1017/s0016672399004462.
8
Extensive genome-wide linkage disequilibrium in cattle.
Genome Res. 2000 Feb;10(2):220-7. doi: 10.1101/gr.10.2.220.
10
Mapping quantitative trait loci using multiple families of line crosses.
Genetics. 1998 Jan;148(1):517-24. doi: 10.1093/genetics/148.1.517.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验