Suppr超能文献

超氧化物通过自由基加成和分子内氧转移介导肽中酪氨酸氢过氧化物和蛋氨酸亚砜的形成。

Superoxide-mediated formation of tyrosine hydroperoxides and methionine sulfoxide in peptides through radical addition and intramolecular oxygen transfer.

作者信息

Nagy Péter, Kettle Anthony J, Winterbourn Christine C

机构信息

Department of Pathology, University of Otago Christchurch, P. O. Box 4345, Christchurch, New Zealand 8140.

出版信息

J Biol Chem. 2009 May 29;284(22):14723-33. doi: 10.1074/jbc.M809396200. Epub 2009 Mar 18.

Abstract

The chemistry underlying superoxide toxicity is not fully understood. A potential mechanism for superoxide-mediated injury involves addition to tyrosyl radicals, to give peptide or protein hydroperoxides. The rate constant for the reaction of tyrosyl radicals with superoxide is higher than for dimerization, but the efficiency of superoxide addition to peptides depends on the position of the Tyr residue. We have examined the requirements for superoxide addition and structurally characterized the products for a range of tyrosyl peptides exposed to a peroxidase/O(2)(.) system. These included enkephalins as examples of the numerous proteins and physiological peptides with N-terminal tyrosines. The importance of amino groups in promoting hydroperoxide formation and effect of methionine residues on the reaction were investigated. When tyrosine was N-terminal, the major products were hydroperoxides that had undergone cyclization through conjugate addition of the terminal amine. With non-N-terminal tyrosine, electron transfer from O(2)(.) to the peptide radical prevailed. Peptides containing methionine revealed a novel and efficient intramolecular oxygen transfer mechanism from an initial tyrosine hydroperoxide to give a dioxygenated derivative with one oxygen on the tyrosine and the other forming methionine sulfoxide. Exogenous amines promoted hydroperoxide formation on tyrosyl peptides lacking a terminal amine, without forming an adduct. These findings, plus the high hydroperoxide yields with N-terminal tyrosine, can be explained by a mechanism in which hydrogen bonding of O(2)(.) to the amine increases is oxidizing potential and alters its reactivity. If this amine effect occurred more generally, it could increase the biological reactivity of O(2)(.) and have major implications.

摘要

超氧化物毒性背后的化学原理尚未完全明了。超氧化物介导损伤的一种潜在机制涉及与酪氨酰自由基加成,生成肽或蛋白质氢过氧化物。酪氨酰自由基与超氧化物反应的速率常数高于其二聚反应的速率常数,但超氧化物加成到肽上的效率取决于酪氨酸残基的位置。我们研究了超氧化物加成的条件,并对一系列暴露于过氧化物酶/O₂⁻体系的酪氨酰肽的产物进行了结构表征。这些酪氨酰肽包括脑啡肽,它们是众多具有N端酪氨酸的蛋白质和生理肽的代表。研究了氨基在促进氢过氧化物形成中的重要性以及甲硫氨酸残基对反应的影响。当酪氨酸位于N端时,主要产物是通过末端胺的共轭加成进行环化的氢过氧化物。对于非N端酪氨酸,从O₂⁻到肽自由基的电子转移占主导。含有甲硫氨酸的肽揭示了一种新颖且高效的分子内氧转移机制,即从最初的酪氨酸氢过氧化物转移一个氧,生成一种双氧化衍生物,其中一个氧在酪氨酸上,另一个氧形成甲硫氨酸亚砜。外源胺促进了缺乏末端胺的酪氨酰肽上氢过氧化物的形成,但未形成加合物。这些发现,加上N端酪氨酸具有较高的氢过氧化物产率,可以用一种机制来解释,即O₂⁻与胺的氢键增加了其氧化电位并改变了其反应性。如果这种胺效应更普遍地发生,它可能会增加O₂⁻的生物反应性并产生重大影响。

相似文献

2
Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides.
Biochem J. 2004 Jul 1;381(Pt 1):241-8. doi: 10.1042/BJ20040259.
3
Superoxide reaction with tyrosyl radicals generates para-hydroperoxy and para-hydroxy derivatives of tyrosine.
J Am Chem Soc. 2012 Oct 10;134(40):16773-80. doi: 10.1021/ja307215z. Epub 2012 Sep 28.
4
Rapid reaction of superoxide with insulin-tyrosyl radicals to generate a hydroperoxide with subsequent glutathione addition.
Free Radic Biol Med. 2014 May;70:86-95. doi: 10.1016/j.freeradbiomed.2014.02.006. Epub 2014 Feb 20.
7
Superoxide radical anions protect enkephalin from oxidation if the amine group is blocked.
Free Radic Biol Med. 2007 Jul 15;43(2):229-40. doi: 10.1016/j.freeradbiomed.2007.04.006. Epub 2007 Apr 10.
8
Neutrophil-mediated oxidation of enkephalins via myeloperoxidase-dependent addition of superoxide.
Free Radic Biol Med. 2010 Sep 1;49(5):792-9. doi: 10.1016/j.freeradbiomed.2010.05.033. Epub 2010 Jun 10.
9
Radical-radical reactions of superoxide: a potential route to toxicity.
Biochem Biophys Res Commun. 2003 Jun 6;305(3):729-36. doi: 10.1016/s0006-291x(03)00810-6.
10
Reactions of superoxide with the myoglobin tyrosyl radical.
Free Radic Biol Med. 2010 Jun 1;48(11):1540-7. doi: 10.1016/j.freeradbiomed.2010.02.039. Epub 2010 Mar 6.

引用本文的文献

1
l-Me-thion-yl-l-tyrosine monohydrate.
IUCrdata. 2023 Jun 30;8(Pt 6):x230551. doi: 10.1107/S2414314623005515. eCollection 2023 Jun.
2
Bilirubin Links Heme Metabolism to Neuroprotection by Scavenging Superoxide.
Cell Chem Biol. 2019 Oct 17;26(10):1450-1460.e7. doi: 10.1016/j.chembiol.2019.07.006. Epub 2019 Jul 25.
3
Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration.
Redox Biol. 2018 Apr;14:618-625. doi: 10.1016/j.redox.2017.09.009. Epub 2017 Sep 19.
4
Chromophore Renewal and Fluorogen-Binding Tags: A Match Made to Last.
Sci Rep. 2017 Sep 26;7(1):12316. doi: 10.1038/s41598-017-12400-9.
5
Activation of dioxygen by copper metalloproteins and insights from model complexes.
J Biol Inorg Chem. 2017 Apr;22(2-3):253-288. doi: 10.1007/s00775-016-1415-2. Epub 2016 Dec 5.
7
Protein oxidation and peroxidation.
Biochem J. 2016 Apr 1;473(7):805-25. doi: 10.1042/BJ20151227.
8
Real-time measurements of amino acid and protein hydroperoxides using coumarin boronic acid.
J Biol Chem. 2014 Aug 8;289(32):22536-53. doi: 10.1074/jbc.M114.553727. Epub 2014 Jun 13.
9
Photodynamic therapy: current status and future directions.
Med Princ Pract. 2015;24 Suppl 1(Suppl 1):14-28. doi: 10.1159/000362416. Epub 2014 May 10.
10
Conjugation of glutathione to oxidized tyrosine residues in peptides and proteins.
J Biol Chem. 2012 Jul 27;287(31):26068-76. doi: 10.1074/jbc.M112.371690. Epub 2012 May 30.

本文引用的文献

2
Theoretical and experimental studies of tyrosyl hydroperoxide formation in the presence of H-bond donors.
Chem Res Toxicol. 2008 Oct;21(10):1923-32. doi: 10.1021/tx8001687. Epub 2008 Sep 25.
3
Protein tyrosine nitration--functional alteration or just a biomarker?
Free Radic Biol Med. 2008 Aug 15;45(4):357-66. doi: 10.1016/j.freeradbiomed.2008.04.010. Epub 2008 May 5.
4
Reconciling the chemistry and biology of reactive oxygen species.
Nat Chem Biol. 2008 May;4(5):278-86. doi: 10.1038/nchembio.85.
5
Cellular defenses against superoxide and hydrogen peroxide.
Annu Rev Biochem. 2008;77:755-76. doi: 10.1146/annurev.biochem.77.061606.161055.
6
Superoxide radical anions protect enkephalin from oxidation if the amine group is blocked.
Free Radic Biol Med. 2007 Jul 15;43(2):229-40. doi: 10.1016/j.freeradbiomed.2007.04.006. Epub 2007 Apr 10.
7
Reactivity of superoxide radical anion with cyclic nitrones: role of intramolecular H-bond and electrostatic effects.
J Am Chem Soc. 2007 Jul 4;129(26):8177-91. doi: 10.1021/ja0702622. Epub 2007 Jun 12.
9
Linoleic acid hydroperoxide reacts with hypochlorous acid, generating peroxyl radical intermediates and singlet molecular oxygen.
Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):293-8. doi: 10.1073/pnas.0508170103. Epub 2005 Dec 30.
10
The oxidative environment and protein damage.
Biochim Biophys Acta. 2005 Jan 17;1703(2):93-109. doi: 10.1016/j.bbapap.2004.08.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验