Suppr超能文献

短链非编码RNA生物学与神经退行性疾病:新的疾病靶点与治疗方法

Short non-coding RNA biology and neurodegenerative disorders: novel disease targets and therapeutics.

作者信息

Weinberg Marc S, Wood Matthew J A

机构信息

Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, Parktown, South Africa.

出版信息

Hum Mol Genet. 2009 Apr 15;18(R1):R27-39. doi: 10.1093/hmg/ddp070.

Abstract

Genomic studies in model organisms and in humans have shown that complexity in biological systems arises not from the absolute number of genes, but from the differential use of combinations of genetic programmes and the myriad ways in which these are regulated spatially and temporally during development, senescence and in disease. Nowhere is this lesson in biological complexity likely to be more apparent than in the human nervous system. Increasingly, the role of genomic non-protein coding small regulatory RNAs, in particular the microRNAs (miRNAs), in regulating cellular pathways controlling fundamental functions in the nervous system and in neurodegenerative disease is being appreciated. Not only might dysregulated expression of miRNAs serve as potential disease biomarkers but increasingly such short regulatory RNAs are being implicated directly in the pathogenesis of complex, sporadic neurodegenerative disease. Moreover, the targeting and exploitation of short RNA silencing pathways, commonly known as RNA interference, and the development of related tools, offers novel therapeutic approaches to target upstream disease components with the promise of providing future disease modifying therapies for neurodegenerative disorders.

摘要

对模式生物和人类的基因组研究表明,生物系统的复杂性并非源于基因的绝对数量,而是源于遗传程序组合的差异使用,以及这些程序在发育、衰老和疾病过程中在空间和时间上被调控的无数方式。在生物复杂性方面,这一教训在人类神经系统中可能最为明显。越来越多的研究认识到,基因组非蛋白质编码小调节RNA,特别是微小RNA(miRNA),在调节控制神经系统基本功能和神经退行性疾病的细胞途径中所起的作用。miRNA表达失调不仅可能作为潜在的疾病生物标志物,而且这类短调节RNA越来越多地直接参与复杂的散发性神经退行性疾病的发病机制。此外,对通常称为RNA干扰的短RNA沉默途径的靶向和利用,以及相关工具的开发,为靶向疾病上游成分提供了新的治疗方法,有望为神经退行性疾病提供未来的疾病修饰疗法。

相似文献

3
Circular RNAs: the Emerging Class of Non-coding RNAs and Their Potential Role in Human Neurodegenerative Diseases.
Mol Neurobiol. 2017 Nov;54(9):7224-7234. doi: 10.1007/s12035-016-0213-8. Epub 2016 Oct 29.
4
Functional roles and networks of non-coding RNAs in the pathogenesis of neurodegenerative diseases.
J Biomed Sci. 2020 Apr 7;27(1):49. doi: 10.1186/s12929-020-00636-z.
5
Small non-coding RNAs as novel therapeutics.
Curr Mol Med. 2010 Jun;10(4):361-8. doi: 10.2174/156652410791317048.
7
Role of noncoding RNAs in trinucleotide repeat neurodegenerative disorders.
Exp Neurol. 2012 Jun;235(2):469-75. doi: 10.1016/j.expneurol.2012.01.019. Epub 2012 Jan 27.
8
Neurodegeneration as an RNA disorder.
Prog Neurobiol. 2012 Dec;99(3):293-315. doi: 10.1016/j.pneurobio.2012.09.006. Epub 2012 Oct 10.
9
The role of microRNAs in neurodegenerative diseases: a review.
Cell Biol Toxicol. 2023 Feb;39(1):53-83. doi: 10.1007/s10565-022-09761-x. Epub 2022 Sep 20.
10
MicroRNAs in neurodegenerative diseases and their therapeutic potential.
Pharmacol Ther. 2012 Feb;133(2):142-50. doi: 10.1016/j.pharmthera.2011.10.002. Epub 2011 Oct 8.

引用本文的文献

3
Decoding the Role of Platelets and Related MicroRNAs in Aging and Neurodegenerative Disorders.
Front Aging Neurosci. 2019 Jul 2;11:151. doi: 10.3389/fnagi.2019.00151. eCollection 2019.
5
LRSSLMDA: Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction.
PLoS Comput Biol. 2017 Dec 18;13(12):e1005912. doi: 10.1371/journal.pcbi.1005912. eCollection 2017 Dec.
6
The involvement of Eag1 potassium channels and miR-34a in rotenone-induced death of dopaminergic SH-SY5Y cells.
Mol Med Rep. 2017 Apr;15(4):1479-1488. doi: 10.3892/mmr.2017.6191. Epub 2017 Feb 10.
7
Analysis of piRNA-Like Small Non-coding RNAs Present in Axons of Adult Sensory Neurons.
Mol Neurobiol. 2018 Jan;55(1):483-494. doi: 10.1007/s12035-016-0340-2. Epub 2016 Dec 13.
8
Fluid-Based Biomarkers for Amyotrophic Lateral Sclerosis.
Neurotherapeutics. 2017 Jan;14(1):119-134. doi: 10.1007/s13311-016-0503-x.
9
MicroRNA screening identifies a link between NOVA1 expression and a low level of IKAP in familial dysautonomia.
Dis Model Mech. 2016 Aug 1;9(8):899-909. doi: 10.1242/dmm.025841. Epub 2016 Jun 29.

本文引用的文献

1
Primary microRNA transcripts are processed co-transcriptionally.
Nat Struct Mol Biol. 2008 Sep;15(9):902-9. doi: 10.1038/nsmb.1475.
2
Biogenesis of small RNAs in animals.
Nat Rev Mol Cell Biol. 2009 Feb;10(2):126-39. doi: 10.1038/nrm2632.
3
MicroRNA-like off-target transcript regulation by siRNAs is species specific.
RNA. 2009 Feb;15(2):308-15. doi: 10.1261/rna.1326809.
4
The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease.
J Neurosci. 2008 Dec 31;28(53):14341-6. doi: 10.1523/JNEUROSCI.2390-08.2008.
5
MicroRNA regulation of Alzheimer's Amyloid precursor protein expression.
Neurobiol Dis. 2009 Mar;33(3):422-8. doi: 10.1016/j.nbd.2008.11.009. Epub 2008 Dec 9.
7
Neurobiology and treatment of Parkinson's disease.
Trends Pharmacol Sci. 2009 Jan;30(1):41-7. doi: 10.1016/j.tips.2008.10.005. Epub 2008 Nov 29.
8
Asymmetric RNA duplexes mediate RNA interference in mammalian cells.
Nat Biotechnol. 2008 Dec;26(12):1379-82. doi: 10.1038/nbt.1512. Epub 2008 Nov 23.
9
Chemical modification of siRNAs for in vivo use.
Oligonucleotides. 2008 Dec;18(4):305-19. doi: 10.1089/oli.2008.0164.
10
Potent inhibition of microRNA in vivo without degradation.
Nucleic Acids Res. 2009 Jan;37(1):70-7. doi: 10.1093/nar/gkn904. Epub 2008 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验