Life Science Centre, Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07012, USA.
Department of Pathology, Icahn School of Medicine, New York, NY 10029, USA.
Genes (Basel). 2022 Feb 25;13(3):425. doi: 10.3390/genes13030425.
Neurodegenerative diseases originate from neuronal loss in the central nervous system (CNS). These debilitating diseases progress with age and have become common due to an increase in longevity. The National Institute of Environmental Health Science's 2021 annual report suggests around 6.2 million Americans are living with Alzheimer's disease, and there is a possibility that there will be 1.2 million Parkinson's disease patients in the USA by 2030. There is no clear-cut universal mechanism for identifying neurodegenerative diseases, and therefore, they pose a challenge for neurobiology scientists. Genetic and environmental factors modulate these diseases leading to familial or sporadic forms. Prior studies have shown that miRNA levels are altered during the course of the disease, thereby suggesting that these noncoding RNAs may be the contributing factor in neurodegeneration. In this review, we highlight the role of miRNAs in the pathogenesis of neurodegenerative diseases. Through this review, we aim to achieve four main objectives: First, we highlight how dysregulation of miRNA biogenesis led to these diseases. Second, we highlight the computational or bioinformatics tools required to identify the putative molecular targets of miRNAs, leading to biological molecular pathways or mechanisms involved in these diseases. Third, we focus on the dysregulation of miRNAs and their target genes leading to several neurodegenerative diseases. In the final section, we highlight the use of miRNAs as potential diagnostic biomarkers in the early asymptomatic preclinical diagnosis of these age-dependent debilitating diseases. Additionally, we discuss the challenges and advances in the development of miRNA therapeutics for brain targeting. We list some of the innovative strategies employed to deliver miRNA into target cells and the relevance of these viral and non-viral carrier systems in RNA therapy for neurodegenerative diseases. In summary, this review highlights the relevance of studying brain-enriched miRNAs, the mechanisms underlying their regulation of target gene expression, their dysregulation leading to progressive neurodegeneration, and their potential for biomarker marker and therapeutic intervention. This review thereby highlights ways for the effective diagnosis and prevention of these neurodegenerative disorders in the near future.
神经退行性疾病源于中枢神经系统 (CNS) 中的神经元损失。这些使人衰弱的疾病随着年龄的增长而发展,由于寿命的延长而变得普遍。国家环境卫生科学研究所 2021 年的年度报告表明,约有 620 万美国人患有阿尔茨海默病,到 2030 年,美国可能会有 120 万帕金森病患者。目前还没有明确的通用机制来识别神经退行性疾病,因此,它们对神经生物学科学家来说是一个挑战。遗传和环境因素调节这些疾病,导致家族性或散发性形式。先前的研究表明,miRNA 水平在疾病过程中发生改变,因此表明这些非编码 RNA 可能是神经退行性变的促成因素。在这篇综述中,我们强调了 miRNA 在神经退行性疾病发病机制中的作用。通过这篇综述,我们旨在实现四个主要目标:首先,我们强调 miRNA 生物发生的失调如何导致这些疾病。其次,我们强调识别 miRNA 假定分子靶标的计算或生物信息学工具,导致涉及这些疾病的生物分子途径或机制。第三,我们专注于 miRNA 的失调及其靶基因导致几种神经退行性疾病。在最后一节中,我们强调了 miRNA 作为这些年龄相关的进行性衰弱性疾病早期无症状临床前诊断的潜在诊断生物标志物的用途。此外,我们讨论了 miRNA 治疗学用于大脑靶向的发展中的挑战和进展。我们列出了一些用于将 miRNA 递送至靶细胞的创新策略,以及这些病毒和非病毒载体系统在 RNA 治疗神经退行性疾病中的相关性。总之,这篇综述强调了研究富含大脑的 miRNA、其调节靶基因表达的机制、它们的失调导致进行性神经退行性变以及它们作为生物标志物和治疗干预的潜力的相关性。这篇综述从而强调了在不久的将来有效诊断和预防这些神经退行性疾病的方法。