Suppr超能文献

校正计时电流法实验中的电催化剂解吸和失活。

Correcting for electrocatalyst desorption and inactivation in chronoamperometry experiments.

作者信息

Fourmond Vincent, Lautier Thomas, Baffert Carole, Leroux Fanny, Liebgott Pierre-Pol, Dementin Sébastien, Rousset Marc, Arnoux Pascal, Pignol David, Meynial-Salles Isabelle, Soucaille Phillippe, Bertrand Patrick, Léger Christophe

机构信息

Unité de Bioénergétique et Ingénierie des Protéines, IMM, UPR 9036, CNRS, 31 Chemin Joseph Aiguier, F-13402 Marseille Cedex 20, France.

出版信息

Anal Chem. 2009 Apr 15;81(8):2962-8. doi: 10.1021/ac8025702.

Abstract

Chronoamperometric experiments with adsorbed electrocatalysts are commonly performed either for analytical purposes or for studying the catalytic mechanism of a redox enzyme. In the context of amperometric sensors, the current may be recorded as a function of time while the analyte concentration is being increased to determine a linearity range. In mechanistic studies of redox enzymes, chronoamperometry proved powerful for untangling the effects of electrode potential and time, which are convoluted in cyclic voltammetric measurements, and for studying the energetics and kinetics of inhibition. In all such experiments, the fact that the catalyst's coverage and/or activity decreases over time distorts the data. This may hide meaningful features, introduce systematic errors, and limit the accuracy of the measurements. We propose a general and surprisingly simple method for correcting for electrocatalyst desorption and inactivation, which greatly increases the precision of chronoamperometric experiments. Rather than subtracting a baseline, this consists in dividing the current, either by a synthetic signal that is proportional to the instant electroactive coverage or by the signal recorded in a control experiment. In the latter, the change in current may result from film loss only or from film loss plus catalyst inactivation. We describe the different strategies for obtaining the control signal by analyzing various data recorded with adsorbed redox enzymes: nitrate reductase, NiFe hydrogenase, and FeFe hydrogenase. In each case we discuss the trustfulness and the benefit of the correction. This method also applies to experiments where electron transfer is mediated, rather than direct, providing the current is proportional to the time-dependent concentration of catalyst.

摘要

使用吸附型电催化剂进行计时电流实验通常是出于分析目的,或者是为了研究氧化还原酶的催化机制。在电流型传感器的背景下,可以在增加分析物浓度时记录电流随时间的变化,以确定线性范围。在氧化还原酶的机理研究中,计时电流法被证明在解开电极电位和时间的影响(这在循环伏安测量中是相互交织的)以及研究抑制作用的能量学和动力学方面非常有效。在所有这些实验中,催化剂的覆盖度和/或活性随时间降低这一事实会使数据失真。这可能会掩盖有意义的特征,引入系统误差,并限制测量的准确性。我们提出了一种通用且出人意料地简单的方法来校正电催化剂的解吸和失活,这大大提高了计时电流实验的精度。该方法不是减去基线,而是将电流除以一个与即时电活性覆盖度成正比的合成信号,或者除以在对照实验中记录的信号。在后一种情况下,电流的变化可能仅由膜损失引起,也可能由膜损失加上催化剂失活引起。我们通过分析用吸附的氧化还原酶(硝酸还原酶、镍铁氢化酶和铁铁氢化酶)记录的各种数据,描述了获得对照信号的不同策略。在每种情况下,我们都讨论了校正的可信度和益处。这种方法也适用于电子转移是介导而非直接进行的实验,前提是电流与催化剂的时间依赖性浓度成正比。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验