Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, U.K.
J Am Chem Soc. 2020 Jul 15;142(28):12226-12236. doi: 10.1021/jacs.0c03574. Epub 2020 Jul 6.
Metal-dependent formate dehydrogenases (FDHs) catalyze the reversible conversion of formate into CO, a proton, and two electrons. Kinetic studies of FDHs provide key insights into their mechanism of catalysis, relevant as a guide for the development of efficient electrocatalysts for formate oxidation as well as for CO capture and utilization. Here, we identify and explain the kinetic isotope effect (KIE) observed for the oxidation of formate and deuterioformate by the Mo-containing FDH from using three different techniques: steady-state solution kinetic assays, protein film electrochemistry (PFE), and pre-steady-state stopped-flow methods. For each technique, the Mo center of FDH is reoxidized at a different rate following formate oxidation, significantly affecting the observed kinetic behavior and providing three different viewpoints on the KIE. Steady-state turnover in solution, using an artificial electron acceptor, is kinetically limited by diffusional intermolecular electron transfer, masking the KIE. In contrast, interfacial electron transfer in PFE is fast, lifting the electron-transfer rate limitation and manifesting a KIE of 2.44. Pre-steady-state analyses using stopped-flow spectroscopy revealed a KIE of 3 that can be assigned to the C-H bond cleavage step during formate oxidation. We formalize our understanding of FDH catalysis by fitting all the data to a single kinetic model, recreating the condition-dependent shift in rate-limitation of FDH catalysis between active-site chemical catalysis and regenerative electron transfer. Furthermore, our model predicts the steady-state and time-dependent concentrations of catalytic intermediates, providing a valuable framework for the design of future mechanistic experiments.
金属依赖型甲酸盐脱氢酶(FDH)催化甲酸盐可逆转化为 CO、质子和两个电子。FDH 的动力学研究为其催化机制提供了关键的见解,这对于开发高效的甲酸盐氧化电催化剂以及 CO 的捕获和利用具有重要意义。在这里,我们使用三种不同的技术:稳态溶液动力学测定、蛋白膜电化学(PFE)和预稳态停流方法,确定并解释了含钼 FDH 氧化甲酸盐和氘代甲酸盐的动力学同位素效应(KIE)。对于每种技术,FDH 的钼中心在氧化甲酸盐后以不同的速率再氧化,这显著影响了观察到的动力学行为,并为 KIE 提供了三个不同的观点。使用人工电子受体的稳态溶液周转受到扩散分子间电子转移的限制,掩盖了 KIE。相比之下,PFE 中的界面电子转移速度很快,消除了电子转移速率限制,并表现出 2.44 的 KIE。使用停流光谱学进行的预稳态分析显示 KIE 为 3,这可以归因于甲酸盐氧化过程中 C-H 键的断裂步骤。我们通过将所有数据拟合到单个动力学模型中,进一步理解了 FDH 催化作用,重现了 FDH 催化作用中活性位点化学催化和再生电子转移之间的速率限制条件依赖性转变。此外,我们的模型预测了催化中间体的稳态和时变浓度,为未来的机制实验设计提供了有价值的框架。