Suppr超能文献

通过抽样进行决策:决策环境在风险选择中的作用。

Decision by sampling: the role of the decision environment in risky choice.

作者信息

Stewart Neil

机构信息

Department of Psychology, University of Warwick, Coventry, UK.

出版信息

Q J Exp Psychol (Hove). 2009 Jun;62(6):1041-62. doi: 10.1080/17470210902747112. Epub 2009 Mar 17.

Abstract

Decision by sampling (DbS) is a theory about how our environment shapes the decisions that we make. Here, I review the application of DbS to risky decision making. According to classical theories of risky decision making, people make stable transformations between outcomes and probabilities and their subjective counterparts using fixed psychoeconomic functions. DbS offers a quite different account. In DbS, the subjective value of an outcome or probability is derived from a series of binary, ordinal comparisons with a sample of other outcomes or probabilities from the decision environment. In this way, the distribution of attribute values in the environment determines the subjective valuations of outcomes and probabilities. I show how DbS interacts with the real-world distributions of gains, losses, and probabilities to produce the classical psychoeconomic functions. I extend DbS to account for preferences in benchmark data sets. Finally, in a challenge to the classical notion of stable subjective valuations, I review evidence that manipulating the distribution of attribute values in the environment changes our subjective valuations just as DbS predicts.

摘要

抽样决策(DbS)是一种关于我们的环境如何塑造我们所做决策的理论。在此,我回顾了DbS在风险决策中的应用。根据经典的风险决策理论,人们使用固定的心理经济函数在结果与概率及其主观对应物之间进行稳定的转换。DbS提供了一种截然不同的解释。在DbS中,一个结果或概率的主观价值源自与决策环境中其他结果或概率样本的一系列二元有序比较。通过这种方式,环境中属性值的分布决定了结果和概率的主观估值。我展示了DbS如何与收益、损失和概率的现实世界分布相互作用,以产生经典的心理经济函数。我将DbS扩展以解释基准数据集中的偏好。最后,作为对稳定主观估值这一经典概念的挑战,我回顾了相关证据,即正如DbS所预测的那样,操纵环境中属性值的分布会改变我们的主观估值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验