Fahlgren Noah, Sullivan Christopher M, Kasschau Kristin D, Chapman Elisabeth J, Cumbie Jason S, Montgomery Taiowa A, Gilbert Sunny D, Dasenko Mark, Backman Tyler W H, Givan Scott A, Carrington James C
Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331, USA.
RNA. 2009 May;15(5):992-1002. doi: 10.1261/rna.1473809. Epub 2009 Mar 23.
The advent of high-throughput sequencing (HTS) methods has enabled direct approaches to quantitatively profile small RNA populations. However, these methods have been limited by several factors, including representational artifacts and lack of established statistical methods of analysis. Furthermore, massive HTS data sets present new problems related to data processing and mapping to a reference genome. Here, we show that cluster-based sequencing-by-synthesis technology is highly reproducible as a quantitative profiling tool for several classes of small RNA from Arabidopsis thaliana. We introduce the use of synthetic RNA oligoribonucleotide standards to facilitate objective normalization between HTS data sets, and adapt microarray-type methods for statistical analysis of multiple samples. These methods were tested successfully using mutants with small RNA biogenesis (miRNA-defective dcl1 mutant and siRNA-defective dcl2 dcl3 dcl4 triple mutant) or effector protein (ago1 mutant) deficiencies. Computational methods were also developed to rapidly and accurately parse, quantify, and map small RNA data.
高通量测序(HTS)方法的出现使得直接定量分析小RNA群体成为可能。然而,这些方法受到多种因素的限制,包括代表性假象以及缺乏成熟的统计分析方法。此外,大量的HTS数据集带来了与数据处理和映射到参考基因组相关的新问题。在这里,我们表明基于簇的合成测序技术作为一种用于拟南芥几类小RNA的定量分析工具具有高度可重复性。我们引入了合成RNA寡核糖核苷酸标准品的使用,以促进HTS数据集之间的客观标准化,并采用微阵列类型的方法对多个样本进行统计分析。使用具有小RNA生物合成缺陷(miRNA缺陷型dcl1突变体和siRNA缺陷型dcl2 dcl3 dcl4三突变体)或效应蛋白(ago1突变体)缺陷的突变体对这些方法进行了成功测试。还开发了计算方法来快速准确地解析、定量和映射小RNA数据。