Suppr超能文献

在去抑制新生小鼠脊髓产生的网络活动期间腹根刺激的兴奋作用。

Excitatory actions of ventral root stimulation during network activity generated by the disinhibited neonatal mouse spinal cord.

作者信息

Bonnot Agnes, Chub Nikolai, Pujala Avinash, O'Donovan Michael J

机构信息

Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.

出版信息

J Neurophysiol. 2009 Jun;101(6):2995-3011. doi: 10.1152/jn.90740.2008. Epub 2009 Mar 25.

Abstract

To further understand the excitatory effects of motoneurons on spinal network function, we investigated the entrainment of disinhibited rhythms by ventral root (VR) stimulation in the neonatal mouse spinal cord. A brief train of stimuli applied to a VR triggered bursting reliably in 31/32 experiments. The same roots that entrained disinhibited bursting could also produce locomotor-like activity with a similar probability when the network was not disinhibited. The ability of VR stimulation to entrain the rhythm persisted in nicotinic and muscarinic cholinergic antagonists but was blocked by the AMPAR antagonist NBQX. Bath application of the type I mGluR1 receptor antagonist CPCCOEt reduced the ability of both dorsal root and VR stimulation to entrain the disinhibited rhythm and abolished the ability of either type of stimulation to evoke locomotor-like activity. Calcium imaging through the lateral aspect of the cord revealed that VR stimulation and spontaneously occurring bursts were accompanied by a wave of activity that originated ventrally and propagated dorsally. Imaging the cut transverse face of L(5) revealed that the earliest VR-evoked optical activity began ventrolaterally. The optical activity accompanying spontaneous bursts could originate ventrolaterally, ventromedially, or throughout the mediolateral extent of the ventral horn or very occasionally dorsally. Collectively, our data indicate that VR stimulation can entrain disinhibited spinal network activity and trigger locomotor-like activity through a mechanism dependent on activation of both ionotropic and metabotropic glutamate receptors. The effects of entrainment appear to be mediated by a ventrolaterally located network that is also active during spontaneously occurring bursts.

摘要

为了进一步了解运动神经元对脊髓网络功能的兴奋作用,我们研究了新生小鼠脊髓腹根(VR)刺激对去抑制节律的夹带作用。在31/32次实验中,施加于VR的短串刺激可靠地触发了爆发。当网络未被去抑制时,夹带去抑制性爆发的相同神经根也能以相似的概率产生类似运动的活动。VR刺激夹带节律的能力在烟碱能和毒蕈碱能胆碱能拮抗剂存在时依然存在,但被AMPA受体拮抗剂NBQX阻断。浴用I型代谢型谷氨酸受体1(mGluR1)拮抗剂CPCCOEt降低了背根和VR刺激夹带去抑制节律的能力,并消除了任何一种刺激诱发类似运动活动的能力。通过脊髓侧面进行钙成像显示,VR刺激和自发出现的爆发伴随着一股从腹侧起源并向背侧传播的活动波。对L(5)节段的横切面进行成像显示,最早由VR诱发的光学活动始于腹外侧。伴随自发爆发的光学活动可能起源于腹外侧、腹内侧,或者在腹角的整个内外侧范围,或者极偶尔地起源于背侧。总的来说,我们的数据表明,VR刺激可以通过一种依赖离子型和代谢型谷氨酸受体激活的机制来夹带去抑制的脊髓网络活动并触发类似运动的活动。夹带作用似乎是由一个位于腹外侧的网络介导的,该网络在自发爆发期间也处于活跃状态。

相似文献

1
Excitatory actions of ventral root stimulation during network activity generated by the disinhibited neonatal mouse spinal cord.
J Neurophysiol. 2009 Jun;101(6):2995-3011. doi: 10.1152/jn.90740.2008. Epub 2009 Mar 25.
2
3
Mechanisms of excitation of spinal networks by stimulation of the ventral roots.
Ann N Y Acad Sci. 2010 Jun;1198:63-71. doi: 10.1111/j.1749-6632.2010.05535.x.
10
GABA-receptor-independent dorsal root afferents depolarization in the neonatal rat spinal cord.
J Neurophysiol. 1998 May;79(5):2581-92. doi: 10.1152/jn.1998.79.5.2581.

引用本文的文献

1
Episodic rhythmicity is generated by a distributed neural network in the developing mammalian spinal cord.
iScience. 2025 Feb 7;28(3):111971. doi: 10.1016/j.isci.2025.111971. eCollection 2025 Mar 21.
2
On the origin of F-wave: involvement of central synaptic mechanisms.
Brain. 2024 Feb 1;147(2):406-413. doi: 10.1093/brain/awad342.
3
Motoneuronal Regulation of Central Pattern Generator and Network Function.
Adv Neurobiol. 2022;28:259-280. doi: 10.1007/978-3-031-07167-6_11.
4
Synaptic Projections of Motoneurons Within the Spinal Cord.
Adv Neurobiol. 2022;28:151-168. doi: 10.1007/978-3-031-07167-6_7.
5
Properties of the epileptiform activity in the cingulate cortex of a mouse model of LIS1 dysfunction.
Brain Struct Funct. 2022 Jun;227(5):1599-1614. doi: 10.1007/s00429-022-02458-1. Epub 2022 Feb 1.
6
Recent Insights into the Rhythmogenic Core of the Locomotor CPG.
Int J Mol Sci. 2021 Jan 30;22(3):1394. doi: 10.3390/ijms22031394.
7
Ventral root evoked entrainment of disinhibited bursts across early postnatal development in mice.
IBRO Rep. 2020 Oct 27;9:310-318. doi: 10.1016/j.ibror.2020.10.005. eCollection 2020 Dec.
8
Motoneuronal Spinal Circuits in Degenerative Motoneuron Disease.
Front Mol Neurosci. 2020 May 25;13:74. doi: 10.3389/fnmol.2020.00074. eCollection 2020.
9
Feedback regulation of locomotion by motoneurons in the vertebrate spinal cord.
Curr Opin Physiol. 2019 Apr;8:50-55. doi: 10.1016/j.cophys.2018.12.009. Epub 2019 Jan 2.

本文引用的文献

1
Four excitatory postsynaptic ionotropic receptors coactivated at the motoneuron-Renshaw cell synapse.
J Neurosci. 2008 Dec 24;28(52):14121-31. doi: 10.1523/JNEUROSCI.3311-08.2008.
2
NKCC1 cotransporter inactivation underlies embryonic development of chloride-mediated inhibition in mouse spinal motoneuron.
J Physiol. 2008 Feb 15;586(4):1059-75. doi: 10.1113/jphysiol.2007.146993. Epub 2007 Dec 20.
4
Two-photon calcium imaging of network activity in XFP-expressing neurons in the mouse.
J Neurophysiol. 2007 Apr;97(4):3118-25. doi: 10.1152/jn.01207.2006. Epub 2007 Feb 15.
5
Spinal cholinergic interneurons regulate the excitability of motoneurons during locomotion.
Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2448-53. doi: 10.1073/pnas.0611134104. Epub 2007 Feb 7.
6
Noradrenaline unmasks novel self-reinforcing motor circuits within the mammalian spinal cord.
J Neurosci. 2006 May 31;26(22):5920-8. doi: 10.1523/JNEUROSCI.4623-05.2006.
7
Propriospinal circuitry underlying interlimb coordination in mammalian quadrupedal locomotion.
J Neurosci. 2005 Jun 22;25(25):6025-35. doi: 10.1523/JNEUROSCI.0696-05.2005.
8
Noncholinergic excitatory actions of motoneurons in the neonatal mammalian spinal cord.
Proc Natl Acad Sci U S A. 2005 May 17;102(20):7344-9. doi: 10.1073/pnas.0502788102. Epub 2005 May 9.
9
Mammalian motor neurons corelease glutamate and acetylcholine at central synapses.
Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5245-9. doi: 10.1073/pnas.0501331102. Epub 2005 Mar 21.
10
Electroporation loading of calcium-sensitive dyes into the CNS.
J Neurophysiol. 2005 Mar;93(3):1793-808. doi: 10.1152/jn.00923.2004. Epub 2004 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验